
http://www.cambridge.org/9780521868396

This page intentionally left blank

Software and Patents in Europe

The computer program exclusion from Article 52 of the European
Patent Convention (EPC) proved impossible to uphold as industry
moved over to digital technology, and the Boards of Appeal of the
European Patent Organisation (EPO) felt emboldened to circumvent
the EPC in Vicom by creating the legal fiction of ‘technical effect’. This
‘engineer’s solution’ emphasised that protection should be available for
a device, a situation which has led to software and business methods
being protected throughout Europe when the form of application, rather
than the substance, is acceptable.

Since the Article 52 exclusion has effectively vanished, it is timely
to reconsider what makes examination of software invention difficult
and what leads to such energetic opposition to protecting inventive
activity in the software field. Leith advocates a more programming-
centric approach, which recognises that software examination requires
different strategies from that of other technical fields.

P H I L I P L E I T H is Professor of Law at The Queen’s University of Belfast.

Cambridge Intellectual Property and Information Law

As its economic potential has rapidly expanded, intellectual property has

become a subject of front-rank legal importance. Cambridge Intellectual

Property and Information Law is a series of monograph studies of major

current issues in intellectual property. Each volume contains a mix of

international, European, comparative and national law, making this a

highly significant series for practitioners, judges and academic research-

ers in many countries.

Series editor

William R. Cornish

Emeritus Herchel Smith Professor of Intellectual Property Law,

University of Cambridge

Lionel Bently

Herchel Smith Professor of Intellectual Property Law, University of

Cambridge

Advisory editors

François Dessemontet, Professor of Law, University of Lausanne

Paul Goldstein, Professor of Law, Stanford University

The Rt Hon. Sir Robin Jacob, Court of Appeal, England

A list of books in the series can be found at the end of this volume.

Software and Patents in Europe

Philip Leith

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-86839-6

ISBN-13 978-0-511-36636-9

© Philip Leith 2007

2007

Information on this title: www.cambridge.org/9780521868396

This publication is in copyright. Subject to statutory exception and to the provision of

relevant collective licensing agreements, no reproduction of any part may take place

without the written permission of Cambridge University Press.

ISBN-10 0-511-36636-1

ISBN-10 0-521-86839-4

Cambridge University Press has no responsibility for the persistence or accuracy of urls

for external or third-party internet websites referred to in this publication, and does not

guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org/9780521868396
http://www.cambridge.org

For Christine and Annie

Contents

List of figures page viii

Introduction 1

1 Software as machine 6

2 Software as software 39

3 Policy arguments 69

4 Software patent examination 102

5 Holding the line: algorithms, business methods and other

computing ogres 135

6 The third way: between patent and copyright? 156

7 Conclusion: dealing with and harmonising ‘radical’

technologies 182

Index 196

vii

List of figures

Fig. 1.1 The Menashe hardware page 8

Fig. 1.2 Signature’s hub and spoke flowchart 13

Fig. 1.3 Nymeyer’s combination of hardware, software and

market terminology 14

Fig. 2.1 US202449 Article Manipulation Device 45

Fig. 2.2 A table-based data structure 46

Fig. 2.3 A tree-based data structure 46

Fig. 2.4 The Nuclear Blocks Handling Language 49

Fig. 2.5 A stack data structure 51

Fig. 2.6 The software life cycle 54

Fig. 2.7 A decision table structure 56

Fig. 4.1 The Zoomracks implementation 111

viii

Introduction

This text follows on from a number of insightful works in the Cambridge

Studies in Intellectual Property Rights series, and I have set my goals to

achieve as useful a work as have my predecessors – only the reader will

know how close to that goal I have managed to get. However, there is a

significant difference between this work on intellectual property and the

others in the series, in that those others were much more firmly located in

substantive and comparative law issues. This text differs somewhat and

the difference can be found in the dual nature of my academic career –

first as a computer scientist and then as an academic lawyer, but always

with a highly sociological bent – and is directed at trying to match the new

and radical technology of computing with the patent system, rather than

provide an overview of substantive and comparative law: there are a

number of other texts which already provide a legal overview very effec-

tively.1 If there is novelty in this project, it is in the attempt to move the

frame of reference so that the patenting of software ‘as such’ is seen as a

respectable and valid goal, but is also seen as a project in which there is

much to do.

My aim has also been to encourage computer scientists to engage with

patent law, rather than – as many I suspect would prefer – to have lawyers

just leave them alone. This latter option is no longer available: software is

being protected, but will not be protected in the most appropriate manner

unless there is involvement from the field of computer science.

I began work on this project under an ESRC research grant2 with quite

a neutral perspective on the value of software patents, indeed perhaps – as

with many academics with an interest in IP matters – slightly sceptical of

their utility. The project as originally conceived was, basically, to browse

1 For example, K. Beresford, Patenting Software Under the European Patent Convention
(London: Sweet & Maxwell, 2000) provides a patent attorney perspective, and I. Lloyd,
Information Technology Law, 4th edn (Oxford: Oxford University Press, 2004) provides a
technically literate approach to the legislation and case law.

2 RES-000–22–0158.

1

through the published patent documentation and try to determine the

kinds of tactics being employed to gain protection and whether there were

methods of more-properly defining what should be allowable than

recourse to the concept of ‘technical contribution’. As I browsed and

my recall of computing and its loci of interest grew, I found more and

more that I could not really see in the documentation the inventiveness

which I knew could be found in computing – there was plenty of software

invention but always hidden away in a manner which undermined that

inventiveness rather than affirming it. My thinking about software patents

changed and the conclusions I drew became more positive, though with

some reservations.

This text is directed, therefore, towards the conceptual space between

computing and law, rather than being a substantive or comparative law

analysis. Few lawyers really understand the technology of software, and

many technologists simply see lawyers as the problem rather than the

solution. This has led to, on the one hand, software creation being viewed

by lawyers as ‘mere data processing’ and on the other hand to patent law

being viewed as highly undesirable by programmers. This interdiscipli-

nary area is difficult, requiring handling of both computing and legal

concepts and an understanding of their interaction. Patent law in the

other fields – engineering, electronics and chemistry, for example – has

been well developed and in fact the patent system grew at the same time as

these fields themselves grew. But with the new technology of software we

have a radical technology being fitted into a well-established body of law,

with perhaps only limited success. This has meant that, rather than this

being limpid prose, there may be a more dense nature to the writing than I

would have liked. The reader has my sympathy, but it does seem essential

that if lawyers are to consider this new technology they have to see it as the

developers themselves see it. There is recent evidence of just how much

effect the legal world can have on technology and why a proper under-

standing is necessary: large sums of money and time were spent on

‘solving’ the Year 2000 problem after lawyers began to raise the possible

issues of negligence. Some will suggest that it was only through lawyers

highlighting the issue that there were no actual problems at the stroke of

the year 2000, but the view from many companies was different, and

many senior IT managers were sacked for having wasted company

resources on a hype promoted by lawyers and their ilk. The debate –

now mostly forgotten – in the academic legal literature about privacy and

Caller ID appears to me to be another such aspect of the confusion found

when conjoining lawyers and technology. Hopefully, this text will be

useful to those interested in technology and law, rather than only to the

patent lawyer.

2 Software and Patents in Europe

Not only is the approach in this text focused more towards software

technology than pure legal analysis, it is also influenced by a procedural

approach to law: that is, that often procedure and practice are more

important elements in understanding law than the bare rules. This

approach was one which I developed during research into the barrister’s

profession with a colleague and published as The Barrister’s World and the

Nature of Law.3 In that research we were struck by just how important it

was to the lawyer to know procedural mechanisms and that they were

more often prouder of their procedural knowledge than their substantive

law knowledge – one interviewee suggesting that if you cited more than a

couple of authorities to a county court judge he would ‘just switch off ’.

The move from researching the law profession to patent law was some-

thing of an accident – a research interview with an IP barrister about

developing the barrister research towards looking more at the specialist

bar led me to suggest that the European Patent Office might be a good

alternative location for a research project. This led to that interviewee

suggesting that I shouldn’t bother with the EPO since it wasn’t very

interesting. I temporarily gave up plans for further study of the UK IP

profession4 and took up the challenge, reported in the text Harmonisation

of Intellectual Property in Europe: A Case Study in Patent Procedure,5 which

was essentially a socio-legal study of European Patent Office procedure

and practice. The barrister who suggested that I ignore the EPO was

Robin Jacob QC, and the reader of the Harmonisation text may agree that

his advice should have been taken: but I would hope that it might aid

understanding of where the potential examination problems with soft-

ware may lie.

The EPO research was funded by the Research Fund of the European

Patent Organisation and further funding was made available to study the

Boards of Appeal. This appeared as ‘Judicial and Administrative Roles:

The Patent Appellate System in a European Context’.6 Once again, my

3 P. Leith and J. Morison, The Barrister’s World and the Nature of Law (Milton Keynes and
Philadelphia: Sweet & Maxwell, 1992).

4 This was undertaken but the results have not yet been published.
5 Vol. 3, Perspectives on Intellectual Property (London: Sweet & Maxwell, 1998. Note that

some changes have occurred since this text was published. For example, DG1 (search)
and DG2 (examination) have combined into DG1, and DG2 now deals with operations.
There is also a level of unhappiness amongst EPO staff which was not found when I carried
out this research – pressures to increase workload apparently causing a strike: ‘If we have
to produce more, then patent quality will go down’, [Wolfgang Manntz, the chair of the
Berlin branch of the EPO staff union] said. ‘We are already at the limits of working
productivity.’ Reported at http://news.zdnet.co.uk, 10 May 2006.

6 Intellectual Property Quarterly 1 (2001), 50–99.

Introduction 3

research was influenced by Jacob J, who had, in Lenzing,7 suggested that:

‘[t]he fact is that the members [of the Boards of Appeal] are independent

in their judicial function and that independence is guaranteed by the EPC

itself. They are judges in all but name – and it is rather a pity that they

were not so-called by the Convention.’ This statement coloured my

research in a number of ways. My conclusions were slightly different,

suggesting that there was an ‘engineering’ mentality in the boards and

sometimes a conflict between legally qualified members and technical

members. This is an interpretation which has influenced my argument

here, particularly in Chapter 1. It would be untrue to suggest that my

findings were accepted by the boards themselves – quite the contrary.8

This asynchronous relationship – as computing might describe it – with

Jacob LJ (as he is now) continued during the writing of this text as I

awaited the decisions in Aerotel and Macrossan. These were handed down

with sufficient time to incorporate them into the text and Chapters 5 and

7 make recourse to them.

What is the argument I am putting forward? In essential terms:
* It quickly became obvious to the boards of appeal (that is, to Board

3.5.1) that the software exclusion under the EPC was not practical. It

was not practical because software was becoming a major part of all

areas of technology.
* Having what might be called an ‘engineering approach’, they felt that

there was a technical framework which would bypass the Art. 52

exclusion. This was that programs which were part of/related to phys-

ical devices were not software ‘as such’. This is the solution of a

practical community rather than a legal concept which explains the

difficulty courts have had with it.

These points are dealt with in Chapter 1. Chapter 2 moves towards a

more software-inclined perspective and argues:
* that the creativity and inventiveness of the programmer is being sub-

stantially undervalued by the patent system;
* that there is a more appropriate way to understand invention in soft-

ware than that of the machine-oriented approach; but
* that the malleability and the descriptive techniques used in software

mean that description (and thus patentability) can be difficult.

7 Lenzing AG’s European Patent (UK) [1997] RPC 245.
8 I presume they were unhappy with, for example, the reporting of their comments, such as

one chairman who suggested: ‘Most lawyers I work with wouldn’t know the top end of a
machine from the other end. How can they assess technical aspects?’ and from a lawyer:
‘Some [technical] colleagues are a bit afraid of the more abstract/intellectual approach,
but that’s a minority.’ The research highlighted a tension between legal and technical
approaches. This is important in helping to understand the nature of ‘technical effect’.

4 Software and Patents in Europe

Chapter 3 outlines in brief the policy context of software patentability,

arguing that it is difficult to prove the need or not for protection for

software. Chapter 4 uses a number of patent examples which are acces-

sible to lawyers to highlight that simply removing the software exclusion

would not be sufficient to remove the tensions in the system: that software

is such a different technology that it requires a better/different examina-

tion than is currently being given to it by patent offices.

In Chapter 5 the problem of trying to draw a line in the sand is raised,

and I suggest that such lines are difficult to make. Indeed, it seems to me

that the technical contribution approach is more amenable to allowing

protection of business methods than pure software. In Chapter 6 the

possibility of alternative forms of protection are discussed, with the con-

clusion that these are essentially ‘utility model’ approaches and best seen

as a complement rather than an alternative to patent protection.

Chapter 7 draws together these arguments and looks towards possible

mechanisms for change. I argue – surely to the objection of software

patent opponents – that protection ‘as such’ will arrive and that, for

computer science as a discipline, it may be advantageous.

The approach as a whole is thus pro-software patent, but aware of the

problems which the system has and will continue to have in handling such

a radical technology. It is also one which suggests that it is better to deal

with these problems in the open than to pretend that they do not exist.

In terms of terminology, I use ‘programmer’. This can be considered

out of date and many in commercial computing now prefer terms such as

‘software engineer’ but, as I have argued elsewhere (in Formalism in AI

and Computer Science9), there are problems with using an ‘engineering’

descriptor. ‘Programmer’ has become almost a term of abuse (alongside

‘data processing’) and I think this would have dismayed the early inno-

vators in the field who were forever battling against the perceived impor-

tance of hardware and insignificance of software. Even though the

balance has changed and software design has demonstrated its inherent

difficulty, those involved in software still appear to have too humble a

view of their role, and using the term ‘engineer’ – in my view – only

highlights this lack of confidence.

My thanks to George Woods for helpful comments on Chapter 4.

Finally, where appropriate I use the term ‘he’ for both ‘he’ and ‘she’.10

9 London and New York: Ellis Horwood/Simon and Schuster, 1990.
10 Since completion of the manuscript, T0154/04 from B.A 3.5.1 has become available to

me. It responded to the Aerotel/Macrossan judgment discussed in Chapter 7. As pre-
dicted in that chapter, the Board of Appeal does not view its decisions as requiring a
referral to the Enlarged Board.

Introduction 5

1 Software as machine

We sense that we know ‘technology’ when we see it. And no doubt that is
correct, most of the time. But it is not correct all of the time. Therein lies the
delusion. You can prove that for yourself by trying to find a definition of
‘technology’ that everybody can agree on. The more you try, the more you
will discover what a horribly imprecise concept it is.1

The problem: invention and the definition of technology

A prediction: within the next decade or so it will be possible to gain patent

protection for software in the widest sense across all of Europe. Another

prediction: algorithms which are not tied to any specific computer imple-

mentation will be openly protectable, as will business methods.

A prediction that software will be protectable is hardly adventurous, since,

as Beresford2 has argued, such patents have been granted by the European

Patent Office for some years now. Beresford’s thesis is that it was only a

general misconception which led to a belief that ‘computer-implemented

inventions’3 were not protectable: he pointed out that a reading of the EPO’s

annual report from 1994 noted that 11,000 such patents had been granted

and only 100 refused. Now, a large number of patents – which are best

described as ‘software patents’ – are entering the national phases of

European EPO member states4 in a variety of technical fields.5

1 Peter Prescott QC sitting as Deputy Judge in Patent Applications by CFPH LLC [2005]
EWHC 1589 (Pat).

2 K. Beresford, Patenting Software Under the European Patent Convention (London: Sweet
and Maxwell, 2000).

3 This is the preferred term of the various patent offices, etc. It will be used interchangeably
with ‘software patent’ and ‘software-related invention’. Part of the author’s argument will
be that it can also frequently be used interchangeably with ‘business method patent’.

4 See a review of current developments in Emerging Technologies: the EPO approach: EPO
Seminar on Search and Documentation Working Methods, EPO briefs – collected works series
(The Hague: EPO, 2005), available online at http://www.european-patent-office.org/dg1/
searchseminar/2005/_pdf/sfa_2005_103_giannotti.pdf.

5 There is no single ‘software’ classification at the EPO and neither did the EPO have a
classification similar to the US ‘business method’ Class 705 (Data Processing: Financial,
Business Practice, Management, or Cost/Price Determination) until the 2006 revision of
the International Patent Classification.

6

The prediction that algorithms and business methods, too, will be

openly protectable – by which I mean that patent offices will no longer

suggest that such protection is not available in Europe – is perhaps a more

debatable point: yet, here too, we see indications that protection is being

given for ‘inventions’ which differ substantially from the traditional form.

For example, the inventive element in claim 1 of Menashe’s ‘Interactive,

computerised gaming system with remote terminals’ (EP625760) is

clearly a ‘gaming system’ rather than any novel application of the under-

lying technology: the basic idea in the patent is a centralised host com-

puter with individuals interacting with this system via home computers,

where ‘aspects of the invention concern auditing and security to ensure

fairness for players and prevent players defeating the outcome of a game’.

The application date for this patent was 1994, a date at which a consid-

erable amount of research work on networking had been carried out,

including auditing and security issues and it is clear from the specification

that the novelty in the invention is located in computerised gaming: the

prior art cited in the application by the inventor was primarily gaming

systems.6 The patent specification includes two diagrams, one being a

representation of a home computer and the other outlining the hardware

elements of the invention. The simplicity of the technical framework in

this patent can be seen from these two diagrams. In the diagram (Fig. 1.1)

reprinted here (Fig. 1 in the patent), 11 refers to the system being part of a

wider network of computers, 12 is the central host, 14 refers to nodes

‘constructed in a known manner to monitor the flow of data’ (the net-

working hardware is modem based). 18 is the player’s terminal, 22 refers

to links to local terminals (presumably for local players) and elements

26 refer to ‘data bases of player, game and accounting information as well

as programs for the host and for downloading to the terminals when

required’. The novelty of the system principally appears to be that the

home computer runs one part of the gaming system via a program and the

remaining part is run on the central server.

The system is an example of a ‘computer-implemented invention’ –

without computerisation we could imagine that a board game might be

constructed with some elements being carried out by a ‘banker’ and some

by the remaining group of players. However, with the addition of program

control there develops a different situation: the speed of processing, the

locational divergence of players and the ability for users to play different

games simultaneously all lead to an artefact which radically differs from

6 For example, EP0542664 ‘Electronic system for the controlled play of bingo and
machines usable with the system’, which was granted, but after opposition was revoked
through lack of inventive step.

Software as machine 7

that based upon a non-computer-based system such as the board game,

Monopoly1. Without being drawn into argument over whether the

Menashe patent should have been granted at all – e.g. was it ‘inventive

enough’ – we can see that it can be read to show one of the current

problems at the heart of the European patenting system and the heated

debate over software, algorithm and business method patents: new tech-

nology allows applications to be developed which do not substantially

differ from the non-computer-based underlying implementations of the

idea except insofar as they would not be useful if they were not compu-

terised. We have to decide whether they should be protected because they

are advances in technology (gaming technology, perhaps) or should they

be denied because their use of existing hardware and software technology

is simply routine.

The argument I wish to present in this chapter is that the underlying

problem at the heart of European software patenting has been the debate

over the meaning of ‘machine’ rather than any specific legal definition of

‘technical effect’ or suchlike – that is, how the notion of this technology

has been constructed by courts and patent offices from its early years of

development. I will suggest that older models have been used and little

attention has been paid to the internal perspectives of the software com-

munity. Since the legal community has spent some 20 years attempting to

24 12
11

20

30

16

28 28

28

28
16

18

14

10

2622

22

22

14 14

18

18

Fig. 1.1. The Menashe hardware

8 Software and Patents in Europe

pin down the meaning of ‘technical effect’ in a legalistic definition and has –

many would argue, to date – been unsuccessful,7 there may some utility in

standing back and using a different theoretical approach.

Also part of my argument is that the important decisions were made in the

1980s. Board of Appeal 3.5.1 of the European Patent Office – which was

given the workload for the relevant classifications – clearly took the view that

the role of a patent office was to give protection to technological develop-

ments and that since such developments were happening in software control

of hardware, they should be protected. Once that step was taken – that

applications should no longer be denied simply because they involved the

use of a program – the path was laid out: any attempt to hold a line becomes

untenable because the definition of protectable technology changes under

the continual assault of perceptive patent attorneys who locate logical con-

tradiction and push the examiners towards removing that logical weakness.

That early position, where all applications for software-related inventions

were denied, for example, could not be held because any good patent

attorney with relevant understanding could transmute a software invention

into a hardware one, thus undermining the line which the examiners were

attempting to hold. Protection may have been less with that form of claim,

but it may have provided sufficient defence to be worthwhile.

This argument is hardly surprising or particularly novel to those with

an interest in technology and related sciences: we have seen similar

processes take place in arguments over definitions of mathematical

objects.8 Such processes are a widespread part of the human condition9

7 Bertil Hjelm, Principal Director DG2, suggested (in 2001) that the lack of a definition of
‘technical’ may actually be a benefit since allowing the Boards of Appeal to ‘adapt it to
unanticipated future technologies is a major strength of the EPC. The price paid must be a
lack of certainty in borderline cases as to what will and will not be accepted.’ WIPO/
ECTK/SOF/01/2.4. Of course, neither of the two concepts used by the Boards of Appeal –
‘technical effect’ and ‘technical contribution’ – is derived from the EPC at all, so can
hardly be one of its major strengths. Not only do the patent professionals have difficulties
with these concepts, but so do system users. See the report on the ‘UK Patent Office
Technical Contribution Workshops’, CIPA Journal (April 2005), 251–3, where the
observer noted: ‘it was difficult to have people with little experience of claim and legal
construction apply the definitions and really consider the actual meaning of, or even
notice, many of the limitations in the definitions of technical contribution.’

8 I. Lakatos, Proofs and Refutations (Cambridge: Cambridge University Press, 1976) shows
this with respect to polyhedron through a conversational technique. Mathematical histor-
ies also show these developments with, for example, the debates over whether a set could
include other sets of infinite size.

9 Anthropologists have been concerned about the nature of ‘boundary’ for many years.
Even the discipline of anthropology has caught itself up in boundary problems –
see G. W. Stocking, ‘Delimiting anthropology: historical reflections on the boundaries
of a boundless discipline’, Social Research (Winter 1995), available online at http://
www.encyclopedia.com/doc/1G1-18229219.html.

Software as machine 9

and indeed appear in the arriving at the meaning of legal concepts, too. In

the patent field we see that the ‘manner of new manufacture’ requirement

in UK law was a derivation from the earlier technological notion under-

pinning the Statute of Monopolies,10 which was used to encourage new

manufacturing techniques in the seventeenth century and was pushed

somewhat to cover the new technologies of, for example, ‘vendible

products’.11

Of wider interest is the legal discussion of the nature of software itself:

someone with a background in computer science would be struck by the

often simplistic approach which lawyers take to software.12 It is similar to

that which those in computing take to law: they view it as a relatively

coherent and stable system of knowledge which evidences a system of

clear and lucid rules.

Despite the fact that this is not entirely a text on the policy decision of

whether software should be protected or not, given that there has been

such a heated debate over the Directive for Computer-implemented

Inventions,13 one is usually expected to take a position on whether software

patents should be allowed or denied. The position outlined here is that

their introduction was inevitable, but that from a perspective of general

industrial policy it is difficult to see a rationale which allows inflatable

kayaks to be protected but a major element of industrial production not

to be so protected. Such developments as business method protections will

certainly cause substantial problems for some in the software and other

related digital industries – which are outlined in the following chapters –

but there may also be some positive benefits arising from the pressures

which the new patenting world will bring: a raised level of inventive step; a

better and cheaper system of patent litigation than we have been used to in

the UK; the development of a more ‘scientific’ approach in computer

10 See S. Thorley, R. Miller, G. Burkill and C. Birss, Terrell on the Law of Patents (London:
Sweet & Maxwell, 2000), xx1.11, 2.01–2.06.

11 Re GEC’s Application (1942) 60 RPC 1.
12 Neitzke, when writing in the 1980s about the lack of clarity in US judgments, suggested:

‘But nothing in the decisions suggest that the [Supreme] Court has any real appreciation
of how a program is created’ or that the Supreme Court judges ‘would recognize a source
program on sight’: F. W. Neitzke, A Software Law Primer (New York: Van Nostrand
Reinhold, 1984). In attempting to mould their client’s interests to the legal framework,
the attorneys may not have helped them with an accurate picture of programming or
software. It is not just judges who seem to fail to get what programming is about: many
commentators also fail – see, e.g., G. Ghidini and E. Arezzo, ‘Patent and Copyright
Paradigms vis-à-vis Derivative Innovation’ IIC 36 (2005), 159, where they get part of the
idea, but do not get the whole idea: ‘. . . software programs remain codes not readable by
human beings.’

13 Directive on the Patentability of Computer-implemented Inventions, COM(2002) 92
Final.

10 Software and Patents in Europe

‘science’; the integration of monopoly-based approaches more directly into

patent law; a divorcing of patent appeal from patent granting.

The critics of software patentability who argue that software is ‘new’,

and requires special treatment, tend to forget that many of the technical

problems which are of interest now have already been met in some form

or other over the past 50 years of development. It would be surprising if

this was not the case – computing has been a significant economic enter-

prise since the 1960s and many of the major technical solutions upon

which computing is now based had begun to be developed by or during

that period. For example, Unix was developed in the 1960s and by the

early 1970s was being used (on a PDP machine with roff software) to write

patent applications by Bell Labs.14 Machines were slow, storage was

expensive and input/output was hardly up to our current standards, but

the basic processing operations, such as multi-tasking (where more than

one task is carried out at any one time), allocation of resources by round

robin (giving each user a fraction of time before moving onto the next

user) and other processes were well understood. There had been more

than sufficient significant technical advance to seek patent protection for

these ideas but many of the earliest patent applications were for hardware

and much litigation therefore related to hardware.15

How did we get here?

Prior to the inception of the European Patent Convention, the patenting

of software and also what are now called business method patents were

valid in the UK. Patent law prior to the EPC made no specific reference to

software and thus applications were dealt with as general technology and

had to meet the requirements of the 1949 Patent Act as to patentability –

that is, that the invention related to a ‘manner of new manufacture’.16

This broad-based definition could clearly include software within its

remit and, indeed, we find that in the 1970s there were attempts to

move from the solely hardware-oriented patent application to that of

application-oriented patent, where the novelty lay in the software being

run on non-novel hardware.

14 D. M. Ritchie, ‘The Evolution of the Unix Time-sharing System’, in AT&T Bell
Laboratories Technical Journal 63(6) (October 1984), 1577–93.

15 See, e.g., the argument over validity of the ENIAC patent discussed in A. R. Burks and
A. W. Burks, The First Electronic Computer: the Atanasoff Story (Ann Arbor, MI: University
of Michigan Press, 1989).

16 Section 101(1), Patents Act 1949: ‘ ‘‘invention’’ means any manner of new manufacture
the subject of letters patent and grant of privilege within section six of the Statute of
Monopolies and any new method or process of testing applicable to the improvement or
control of manufacture, and includes an alleged invention.’

Software as machine 11

As a useful example of this move we can examine the Nymeyer patent

(GB1352742), which was filed in 1971 from an earlier US application,17

entitled ‘Improvements Relating to Data Processing’, which in many

ways – particularly in that it was an application to protect a business

method – was a precursor to the Signature patent18 litigated in State

Street,19 a decision which has revolutionised the patent system in the

US. The specification outlines that the invention related to the use of a

computer to operate a market:

The present invention relates to data processing, and has particular application to
‘fungible goods’, hereby defined for the purposes of the present specification as
anything which is available in quantity and of which one unit is precisely equiv-
alent to another unit so that a buyer will not care which particular unit he obtains,
for example commodities, stocks and shares, in an auction market, hereby defined
for the purposes of the present specification as a market in which fungible goods
are bought and sold, for example a commodity exchange or stock exchange. For
the purposes of the present specification ‘at market’ orders are hereby defined as
orders to buy or sell at the prevailing market price which is unspecified in the
order.

Claim 1 detailed a ‘data handling system suitable for establishing prices

for a given kind of fungible goods’. The general similarity to the Signature

patent can be seen from the Signature description:

A data processing system is provided for monitoring and recording the informa-
tion flow and data, and making all calculations, necessary for maintaining a
partnership portfolio and partner fund (Hub and Spoke) financial services con-
figuration. In particular, the data processing system makes a daily allocation of
assets of two or more funds (Spokes) that are invested in a portfolio (Hub). The
data processing system determines the percentage share (allocation ratio) that
each fund has in the portfolio, while taking into consideration daily changes both
in the value of the portfolio’s investment securities and in the amount of each
fund’s assets.

Both of these patents are essentially implementing business ideas via

a computer system – Nymeyer was setting up an auction system to

allow individuals to buy and sell shares, while Signature is similarly

17 See the US equivalent, US 3,581,072 ‘Auction Market Computation System’ and note
the change in title for the UK office. Filed 1968.

18 See US 5,193,056 ‘Data processing system for hub and spoke financial services config-
uration’. A PCT application was filed to include Europe (WO9215953) but the appli-
cation was later deemed withdrawn without examination. The radical step of State Street
was effectively to make the only requirement for patentability to be that the application
covered something ‘useful’. For a more detailed coverage of the current US situation, see
G. Stobbs, Business Method Patents (New York: Aspen, 2002).

19 State Street Bank & Trust Company v. Signature Financial Group, Inc., 149 F 3d 1368
(Fed. Cir. 1998).

12 Software and Patents in Europe

purchasing and selling shares but doing so by using a networked system to

combine the purchasing power of a partnership. Neither of these patents

utilise ‘novel’ computing techniques yet they both demonstrate different

approaches to describing the invention and to both can be applied the

conclusion of Whitford J: ‘Such an operation could in theory be done

without the need for any automatic aids but in practice needs to be

automatically computed.’20 Signature certainly uses a flowchart method-

ology to represent this (Fig. 1.2) but it is a flowchart which shows a

business process rather than a detailed program implementation.

Nymeyer lays out the business method diagrammatically (Fig. 1.3) as a

mixture of process, software and hardware – as, indeed, ‘a machine’.

Images are important in the description of software – as we see below in

discussion of ideograms21 – since they determine how an artefact which is

mutable is presented. Here, Nymeyer’s patent attorney was clearly meld-

ing together various integers to produce what he hoped would be viewed

as a single inventive entity. For example, the ‘Price Determine Gate’ is

described in circuit logic terms:

102

M

START

DISPLAY
MAIN MENU

ENTER
MENU

CHOICE

VALID
CHOICE

HUB AND
SPOKE

ALLOCATION
INITIATE

DATA
DISK

UNREALIZED
GAIN AND LOSS

ACTIVITY

DAILY
INCREMENTAL

ACTIVITY

YEAR-END
TAX

E
Y

N

126 128Y

Y

Y

N

N

N

114 116

118 120

B

C

122

124

D

Y

N

N

Y
A

100

104

106

108

110 112

130
END

Fig. 1.2. Signature’s hub and spoke flowchart

20 Application by IBM for the Revocation of Letters Patent No. 1,352,742 In the Name of
Frederick Nymeyer, Patents Appeal Tribunal, 16 October 1978. The text of this judgment
was added as an appendix to a brief amicus curiae for Chevron Research Company in
Sidney A. Diamond v. Diehr 450 US 175 (1981) and is available online.

21 L. Fleck, Genesis and Development of a Scientific Fact (Chicago, IL: Chicago University
Press, 1979), p. 137 defines these as: ‘. . . graphic representations of certain ideas and
certain meanings. It involves a kind of comprehending where the meaning is represented
as a property of the object illustrated.’

Software as machine 13

The main data storage unit 18 is provided with an output circuit that is connected
to a price determining gate circuit 19 having three outputs 21, 22, and 23. The
output circuit of 21 of gate 19 is connected to a subtractor circuit 24.

A description using such terms would not have been usual amongst either

hardware designers or programmers of the 1970s: it was a descriptive

picture drawn up by the patent attorney to emphasise the machine-like

qualities of the invention. In effect, it was a composite structural image

which – when actually programmed – would have been entirely different

in both software and hardware form, being run on a general-purpose

computer and programmed in Fortran, Cobol or something similar.

The application was successful and the UK patent was granted in 1974.

IBM objected to the grant and requested revocation, which was heard by

Graham J and Whitford J in the Patents Appeal Tribunal. The only point

argued between the parties was whether the invention was an invention

under the 1949 Act22 – that is, whether it was a ‘manner of new manu-

facture’. The court thus looked only at claim 1, since if that failed the

patent as a whole failed. IBM’s primary objection was that the invention

covered a standard computer and therefore could not be directed to a

manner of new manufacture. Given that the specification outlined such

OUTPUT

INPUT

MARKET
STATION
MARKET
STATION

ENCODER
AND

GATE

INPUT

OUTPUT
SUBTRACTOR

MARKET STATION

OUTPUT
STORAGE

AND
DECODER

CLOSING
PRICE

STORAGE
PRICE

COMPARATOR

SELL
SEQUENCER

BUY-SELL
GATE

BUY
SEQUENCER

CORRECTION
GATE

SUBTRACTOR

PROGRAM
CONTROL

AT MARKET
REGISTER

MARKET
REGISTER

GATE

MARKET
COMPARATOR

MARKET
COMPARE

GATE

PRICE
DETERMINE

GATE

MAIN
DATA

STORAGE

CORRECTION
COUNTER

13
12

11

17

14

16 15

22

23

34 35

19

18

38

39

21 24

3632

37

10

28

26 25

29
27

31

4241

33

Fig. 1.3. Nymeyer’s combination of hardware, software and market
terminology

22 The new 1977 Act was not relevant.

14 Software and Patents in Europe

elements as a comparator, if the claim had limited itself to a computer

with such special hardware, IBM’s objection would not be valid but – in

IBM’s view – since the claim did not limit itself to such a special purpose

computer and one of their standard computers would (if programmed to

do so) be capable of storing the relevant data, making the necessary

comparison and selecting the appropriate price, this broader claim was

unpatentable. In the view of IBM, even if the idea is new and not obvious,

‘it does not become a manner of manufacture if you do no more than call

in the aid of an ordinary computer to do the work for you’.

The court, however, took a different perspective – one which has much

more in common with recent European Patent Office positions: it looked

at the invention as a whole, and sought similarities with the traditional

‘machine’. This is not to say that they were duped by the nature of the

invention – they clearly saw that the inventive element was a business

scheme23 – but they were prepared to use the machine analogy to under-

stand the invention; that, when programmed, the general purpose com-

puter becomes a special purpose machine (an ‘apparatus’), even if no

special hardware is evident in the final system:

As matters stand, however, until Mr Nymeyer came along there was no reason to
suppose that anyone would have thought of writing the appropriate programme
and building it into a computer or otherwise putting it into a physical form
suitable for use with a standard computer. A computer programmed to carry
out Mr Nymeyer’s system must we think be considered as being an apparatus
having novel characteristics.

The UK patent office and courts were generally in this period agreeable to

the notion that a new machine came into being when a standard com-

puter was programmed. There was little concern with the idea of the

program itself being protectable rather than the system as a whole: none

of the decisions raised this as a possible area of concern. In large part this

was simply due to the technology at the time: machines were expensive,

software was usually packaged with the hardware, and the marketplace

for software was radically different from that of today.

What are we to make of Nymeyer’s patent? Clearly, it was a business

scheme of the order which has now become controversial within Europe.

Yet the court did not view this as problematic and had little problem in

accepting that this was a ‘manner of new manufacture’ and integrated it

under the rubric of ‘machine’, following the manner of seeing that if cam

control of lathes is protectable (a well-developed technology of the 1970s

23 ‘We agree that it is plain that this patent derives from an idea Mr Nymeyer conceived as to
the best way of determining a selling price for, for example, a stock or share . . .’

Software as machine 15

involving physical control by wheels with cut-outs on their circumference

prior to CNC manufacture) then programs were simply the computer

equivalent. They did distinguish that this patent was not a mathematical

algorithm, which – if they had found to be the case – may have signifi-

cantly altered their outlook.

As with all judgments, there is very little contextual information avail-

able on why the patent came about or what has happened since. What did

Nymeyer intend for the patent? It was not worked commercially since

electronic trading in stocks did not begin until many years after the patent

had been issued. We tend to assume that all patents are applied for in the

spirit of seeking financial reward (the philosophical justification for the

system) and it may be that in many cases this is so. However, software can

differ from this quite substantially, since it has a ‘theoretic’ component

which can underpin philosophical or ideological positions. Although I have

been unable to find anything written by Nymeyer on his patent applica-

tion (despite the fact that he was quite a prolific writer) it can be seen that

there was more than a financial agenda behind his application. Nymeyer

was a successful businessman and an active supporter of the ‘Austrian

school’ of economics which was based upon the methods of Ludwig von

Mises – a classical liberal in economic thought. Nymeyer was a founder of

the Libertarian Press, an economics publisher which continues to publish

classical libertarian texts and was also involved in religious organisations

promoting Dutch Calvinism. The aim of the patent seemingly was to

push the idea of citizen involvement in share dealing via technology and

undermine the professionalised control of the marketplace in shares.

Market prices, he felt, should be freed from the siphoning off of profits,

and prices should be free to fluctuate wildly without the artificial con-

straints added by specialists.24 The US patent specification indeed refer-

ences an extract from a reprint of an economics work which was

published by his Libertarian Press.25 Though considered a machine by

a court, it was certainly a politically-inspired machine – pushing

Nymeyer’s view that: ‘It is that financial calculation in terms of gold

which controls the thinking of all well-informed people.’

24 This information was provided by J. Sprowl, who recalled discussions some years before
with the author of Nymeyer’s patent application (Walther E. Wyss).

25 E. Von Boehm-Bawerk ‘Value and Price’, pp. 215–35 (an extract from the three-volume
work Capital and Interest (South Holland, IL: Libertarian Press, 1960). Nymeyer’s views
have been reported as: ‘[h]is main contention was that our race resolutions abridged his
Christian freedom to discriminate. He claimed the divine right to disapprove of bow legs,
crooked teeth, and black skin, and did not wish to have his liberty judged by another
man’s conscience.’ (See H. Stob at http://www.stobfamily.com.)

16 Software and Patents in Europe

The physicality of the invention – that is, its representation as machine

rather than program – is one which was common in the early UK appli-

cations. Beresford, in his Patenting Software, has discussed this process as

the making of ‘something tangible’ when he discusses the construction of

the claims in Badger Co. Inc’s Application.26 The attorney had first

claimed: ‘The method of mechanically designing and forming a visible

drawing illustrating a piping system . . .’, which was rejected by the patent

office, since this was essentially a process of designing a plan, which

clearly it is, and that the –

mechanism required, i.e. computer and data converter or plotter, are known
instruments requiring no further description or illustration, so that the only
potential novelty which the specification discloses resides in the manner in
which the operation of these machines is conducted . . .

Lloyd-Jacob J noted the parallel for designing and forming to be found in

a chemical process: ‘the forming being regarded as the selection and

preparation of the raw material for the process and the second as the

provision of reaction conditions necessary to secure the required conver-

sion.’ However, the analogy broke down because there were no physical

elements being combined as in a chemical process, since the ‘raw material

is conceptual in character, lacking the concrete actuality which differ-

entiates substance from notion, which actuality is not necessarily con-

ferred by writing, printing or otherwise representing the intellectual

information upon a sheet, card, tape or other carrier’. The problem in

Badger was that the components as set out in the application did ‘not

contribute to the fashioning of some product such as the definition of

invention has hitherto been thought to require’. Thus there was an

invention, it was patentable, but it was not being correctly claimed in

the application, and this correct format was that of a machine and a

process for ‘conditioning’ that machine. The application was remitted

back to the patent office with the clear direction of the judge that, if claim

1 was reworded towards a machine format, it would be appropriate. The

amended claim thus became: ‘A process for conditioning the operation of

a computer and associated plotter . . .’, with no amendment required to

the steps in the method which had been laid out in the original application

(i.e. the core of the invention).

We can see that the machine analogy was central to the early success of

applications in the UK: in Slee and Harris’s Applications,27 too, the same

26 [1970] RPC 36; [1969] FSR 474. The original US Patent was titled ‘Automated
Designing’ (US 3,636,328), filed 1968. A continuation was granted as US 3,867,616.

27 [1966] RPC 194.

Software as machine 17

approach was taken – that a claim to a method of operating a computer

was not allowable, but a claim to a computer when modified to operate

according to the method and a claim to a means of controlling the

computer were allowed. This did not mean that a new machine per se

was required, simply that if the invention was abstract it was unpatent-

able, but if linked to the control of hardware then it was patentable.

The only requirement from the patent attorney wishing for successful

prosecution of the application was to ensure that a physical machine was

somewhere at the heart of the claimed invention. The distinction seems

hardly more than semantic but it was more than that – it was attempting

to fit the new technology of software into an already-existing mental

conception and the best-fitting conception was that of machine.

In the US similar developments in software technology were happening:

the US Patent and Trademark Office was easing its opposition towards the

protection of what was intrinsically a software invention, though the early

applications always covered themselves with the cloak of device. Pal Asija

claims, in How to Protect Computer Programs, to have prosecuted the ‘first

pure software patent’28. This related to ‘Swift Answer’ a ‘system of full

text, free-form, narrative, information input, storage and retrieval’, which

allowed the user to ask free-form questions of the system in query lan-

guage. The application was filed in 1974, at a time when there was much

interest in information systems, such as legal databases where developers

had discovered that, to be successful, they were required to hold the entire

text of a judgment rather than just a short abstract. Given the difficulty of

using these systems to full effect, improvements in querying and recall

would have been substantial advances, with the patent’s aim being: ‘to

facilitate retrieval of narrative textual information by making the system

very forgiving of user’s mistakes with respect to rules of programming,

punctuation, syntax, grammar and spelling, etc.’29 Still, claim 1 of the

patent, rather than being directed purely towards software, utilised the

machine framework: ‘A process for information input using electrome-

chanical devices, storage, search and output comprising the steps of . . .’
Thus, though this was a process claim and hence the basis of the argument

that this was a ‘pure software patent’ – rather than a product or machine

claim, for example – we see that the process in claim 1 entails some

hardware components, perhaps because patent prosecution without

28 US 4,270,182. Of course, as with anything technical, there are disputes about invention.
Stobbs early suggestion included a 1972 patent, US 3,633,176, or even a 1951 patent,
US 2,552,629, if not Samuel Morse’s 1840 patents on signal processing (‘dots and
spaces’). G. A. Stobbs, ‘Information wants to be free, but the packaging is going to cost
you!’, Mich. Telecomm. Tech. L. Rev. 75 (1996).

29 P. 152.

18 Software and Patents in Europe

locating the hardware at all would have been impossible to get past the

examiner. It would take the State Street decision to move discussion away

from the machine entirely to the notion of ‘usefulness’. But at the time

the patent at the heart of the State Street case was being examined,30

US applications were still making reliance upon hardware dressing:

for example, the patent was called ‘A data processing system . . .’ and

claim 1 referred to ‘A data processing system for managing a financial

services configuration . . .’ Prior to State Street, the change in US approach

had meant that a software invention could be protected when it was

claimed in the form of a process as well as – like the Badger ‘Automatic

Designing’ patent – a ‘system’, so long as that system was machine-like.

The significance of State Street for the diversion of paths between the US

and Europe on patentability cannot be underestimated – since ‘usefulness’

is now the primary requirement for patentability in the US, an ‘anything

goes’ attitude appears to have developed and many observers have their

favourite examples of patents which demonstrate this. One is Olson’s

‘Method of Swinging on a Swing’:31 ‘A method of swing [sic] on a swing

is disclosed, in which a user positioned on a standard swing suspended by

two chains from a substantially horizontal tree branch induces side to side

motion by pulling alternately on one chain and then the other’,32 an

application which could – one might hope – hardly succeed in Europe.

Setting current US developments aside, however, the major distinction

between the US approach and the UK one prior to the implementation of

the EPC was that US patent law allowed only four categories of invention –

process; machine; article of manufacture; and composition of matter and

software – many fitted easily into the process and machine classifications.

In the UK, the need to locate it legally led to a best fit under the concept of

‘manner of new manufacture’, with the bonding of novel software and

well-known hardware as an inventive ‘machine’.

It is interesting to note that both the Nymeyer patent and the Badger

patent related to products which were later to become central to their two

fields. For example, a world of share dealing without electronic trading

would be unimaginable – with the technology first being applied within

the stock-broking profession itself and now open to home investors.

Nymeyer’s invention preceded the major impact of producing a global

30 US 5,193,056, ‘Data Processing System for Hub and Spoke Financial Services
Configuration’, filed 1991. The Euro PCT application (WO9215953) based on this
US filing was deemed by the EPO to have been withdrawn in 1998.

31 US 6,368,227.
32 The advance in usefulness claimed is that the older, traditional forms of swinging back

and forward ‘can lose their appeal with age and experience. A new method of swinging on
a swing would therefore represent an advance of great significant and value’.

Software as machine 19

share-dealing network and also the more minor: the introduction of

e-commerce techniques leading to a new profession – that of day trader –

who utilises the speed of computerised share dealing to buy and sell on

the same day, hopefully with large profits, just as he wished. Even less

imaginable would be a world of engineering without computer-aided

design. During the early period of commercial development, the CAD

market grew from under $25 million in 1970 to just under $1 billion

by 197933 and is now well over $100 billion in value. CAD software

has developed further, with tools being designed to integrate with the

designed software so that computer-aided manufacture (CAM) is possi-

ble, and the entire engineering chain has been reworked to encompass

supply chain integration based upon these CAD/CAM techniques, allow-

ing globalisation of industrial production with design occurring in one

or more locations and supply, manufacture and delivery being arranged

from any number of other locations.

Neither of these developments required software implementation as an

essential: it would be perfectly possible to produce special purpose machi-

nery utilising logic circuits which carried out exactly the same function as

that produced by a standard computer under program control, but the

costs involved in doing this would be considerably higher because soft-

ware development – for all its many problems – is still a more efficient and

effective way of producing these artefacts than through electronic circui-

try which was and remains commonly open to patent protection.

By 1969, the UK patent office had arrived at a position which contin-

ued until the implementation of the 1977 Patents Act:

Patents are not granted for computer programmes expressed as such. No objec-
tion is, however, raised in respect of inventions for novel methods of programming
computers to operate in a specified way, or for computers so programmed, or for
tape etc. having recorded on it a novel programme to control a computer in a
stated way. Nor, in general, is objection taken to inventions involving new uses of
computer in controlling manufacturing processes or to methods of testing, involv-
ing novel programmes, for computers under manufacture.34

It was a position based upon a legal fiction – that software and hardware

became a new machine. Many commentators noted the semantic sleight

of hand. In the Banks review, for example:

The position on program patents seems to be that they are granted by the patent
office when the claims are drafted so that they relate to a piece of machinery or
apparatus e.g. a computer when programmed in a certain way; a tape or card with a
certain configuration of holes; a computer-controlled process such as a power station

33 http://www.cadazz.com. 34 UK Patent Office, February 1969.

20 Software and Patents in Europe

or steel works provided that the invention claimed shows novelty. Whether or not
there can be said to be a real distinction between a program invention claimed in this
rather roundabout way and a claim to the program itself is at least open to doubt.35

Germany, too, had taken a relatively liberal approach (based upon the

‘technical’ model which later found its way into EPO thinking) with BCD-

Conversion.36 However, such a liberal view of patenting was not to be found

in all of Europe.37 France, for example, specifically excluded programs or

sets of instructions by statute.38 Why might there have been such a differ-

ence in approaches to the technology? One reason may well be the histor-

ical development of the technology. In the UK theoretical work on

computability had been carried out by Alan Turing; Maurice Wilkes and

colleagues produced the first stored program machine (EDSAC) at

Cambridge; and what has been claimed to have been the first ‘office

computer’ system was installed at Lyons Teashops in February 1954.39

Programming, too, had been part of the technological development.

EDSAC had, for example, developed a subroutine library of commonly

used programming routines of which Dijkstra has suggested: ‘We should

recognise the closed subroutines as one of the greatest software inventions; it

has survived three generations of computers and it will survive a few more,

because it caters for the implementation of one of our basic patterns of

abstraction.’40 Wilkes has pointed out that one of the first programs to be

run on EDSAC was a game program – a vertical line of dots on the screen

represented a fence and a user could – by placing his hand in the light beam

of the photo-electric paper tape reader – cause a hole to be placed in that

fence in different locations. A horizontal line of dots would then periodi-

cally move slowly towards the right and, if the hole was in the correct

location in the fence, the dots would pass through; otherwise not. Further,

the program would try to detect a pattern in the user’s placement of the

hole in the fence and, if it did, the dots would always get through the hole.

35 M. A. L. Banks (Chairman), The British Patent System: Report of the Committee to Examine
the Patent System and Patent Law (London: Stationery Office, 1970), Cmnd. 4407, para.
474. (hereafter the Banks Committee Report on Reform of the Patent System, 1970).

36 BCD Conversion (In re Western Electric Co. Inc.) IIC vol. 5, No. 2, 1974, pp. 211–16
(Federal Patent Court, 17th Senate, 1973).

37 G. Kolle, ‘The Patentability of Computer Software in Europe and under International
Patent Treaties’, in H. Brett and L. Parry (eds.), The Legal Protection of Computer Software
Oxford: ESC Publishing, 1981) provides a round-up of the various attitudes taken by the
member states of the EPC.

38 Article 7, para. 2(3) of the Patent Act 1968.
39 G. Ferry, A Computer Called Leo (London: Fourth Estate, 2003). Note that the Leo

system was part hardware, part software and part business method re-engineering
process.

40 E. W. Dijkstra, ‘ACM Turing Lecture: The Humble Programmer’, Commun. ACM
15(10) (1972), 859–66 (emphasis added).

Software as machine 21

As Wilkes suggests: ‘No one took this program very seriously, but it

contained the germs of computer graphics, man-machine interaction,

and artificial intelligence.’41 He should also have noted that his was a

precursor for what has become a major industry – computer gaming.42

The computer games industry is worth, in the US alone, $7 billion.43

Intellectual property policy has always had a strong national element –

anyone who attends meetings organised by the various industrial and

commercial bodies will see that attendees always argue for a legal position

(usually involving more protection) which might protect their own local

industry. Jacob pointed to this in his criticism of the growth of industrial

property.44 Thus countries like, for example, France, with little indige-

nous software industry, would be expected to prefer software not to be

protected since it would be of little benefit to their much smaller industry –

a situation which in some senses continues: even in 2006, it was being

reported that ‘you could put the entire French software industry into

Symantec, which alone generates about e3B in annual sales’.45

The EPC exemptions

After much negotiation among the potential member states and the fail-

ure of the Community Patent which was to have brought the European

patenting system under the control of Europe and the Court of Justice,

the ‘temporary’ European Patent Convention (EPC) was signed in 1973.

The European Patent Office began to take applications in June 1978 and,

though there were worries that it might not succeed, it became a highly

successful operation, undermining the workload of the national offices of

the member states.

The negotiation around the EPC had included discussion of what should

constitute a patentable invention, the result being Art. 52 and its list of

exemptions. Pila has provided46 an analysis of the changing positions of the

various countries as the draft EPC was firmed up, and there appears to be

little in the way of logical development of the ideas: the liberal wing and the

41 M. Wilkes, Memoirs of a Computer Pioneer (Cambridge, MA: MIT Press, 1985), p. 208.
42 The first patent for a computer game was US 2,455,992, issued on 14 December 1948.
43 2006 Figure produced by Entertainment Software Association, at http://www.

theesa.com.
44 R. Jacob, ‘Industrial Property – Industry’s Enemy’, Intellectual Property Quarterly 1

(1997), 3.
45 Reported 27 April 2006, http://www.thealarmclock.com.
46 See J. Pila, ‘Dispute over the meaning of ‘‘Invention’’ in Art. 52(2) – The Patentability of

Computer-Implemented Inventions in Europe’, IIC 36 (2005), 173 and J. Pila, ‘Article
52(2) of the Convention on the Grant of European Patents: What Did the Framers
Intend? A Study of the Travaux Preparatoires’, 36 IIC (2005), 755.

22 Software and Patents in Europe

more conservative Europeans both believing that they had arrived at an

EPC position which reflected their current national position. For example,

the UK must clearly have seen the use of ‘as such’ as simply following their

own current situation as laid out in the Patent Office note of 1969 (above).

Kolle has suggested, too, that a significant element in deciding how to

handle software was the Patent Co-operation Treaty (PCT). This was

already in existence as an international searching mechanism and some of

the offices which were already examining under PCT may thus have felt

confident in following this approach. The finally agreed text was:

Patentable inventions

(1) European patents shall be granted for any inventions which are susceptible of
industrial application, which are new and which involve an inventive step.

(2) The following in particular shall not be regarded as inventions within the
meaning of paragraph 1:
(a) discoveries, scientific theories and mathematical methods;
(b) aesthetic creations;
(c) schemes, rules and methods for performing mental acts, playing games or

doing business, and programs for computers;
(d) presentations of information.

(3) The provisions of paragraph 2 shall exclude patentability of the subject-
matter or activities referred to in that provision only to the extent to which a
European patent application or European patent relates to such subject-
matter or activities as such.

(4) Methods for treatment of the human or animal body by surgery or therapy
and diagnostic methods practised on the human or animal body shall not
be regarded as inventions which are susceptible of industrial application
within the meaning of paragraph 1. This provision shall not apply to
products, in particular substances or compositions, for use in any of these
methods.

Despite the success in achieving the negotiated Article, we might say

that much of the history of the EPC has been the attempt to circumvent

the exemptions set out in Art. 52. Such negotiations towards agreement

and then later interpretative attempts to unravel the process of negotia-

tion for an underlying set of principles are not unusual in law generally

or patent law in particular: compare the insertion of agreed propositions

pertaining to protection and promotion of the useful arts and sciences

into the US Constitution47 and the current debate over extent of

47 See I. B. Cohen, Science and the Founding Fathers: Science in the Political Thought of Thomas
Jefferson, Benjamin Franklin, John Adams and James Madison New York: Norton, 1995).
Article 1: ‘To promote the progress of science and useful arts, by securing for limited
times to authors and inventors the exclusive right to their respective writings and
discoveries.’

Software as machine 23

protection arising from the constitution in terms of ‘anything under the

sun that is made by man’.48

This text is concerned with those exemptions in Art. 52(2) and (3) but it is

useful to note that section (4) has also been of concern, with various Enlarged

Board of Appeal decisions49 laying out just what is exempted and what is not

with regard to therapy. The exemption exists to protect doctors from legal

action in their treatment of patients. The attempts to circumvent Art. 52 have

come from outside the European Patent Office, but also – if we take a literal

reading of the EPC – from within the office itself.50 If this is true, one must

wonder why the exemptions were introduced into the EPC in the first place.

The grouping together of the exemptions together under Art. 52(2) has

generally been seen to indicate that these are somehow conceptually

related and that there is a logic behind the grouping which might allow

us a context by which we could interpret these more accurately. Tapper,

writing in 1983, did suggest that ‘[t]his scheme of exclusions apparently

reveals a comprehensive intention to preclude the protection of ideas as

such’, but he – at that time – was also noting that it was ‘not absolutely

clear how much of the present [UK] law has been changed’.51 Certainly

there is some commonality between many of the elements – they are not

at first sight of ‘industrial application’ and there is an abstract quality

about each of these (at least to the 1970s engineer) which does lead to a

sense that it is the abstractness (the lack of ‘tangibility’, to use Beresford’s

phrase52) which is common. Indeed, in T1173/97, the Board of Appeal

suggested: ‘[t]he exclusion for patentability of programs for computers as

such . . . may be construed to mean that such programs are considered to

be mere abstract creations, lacking in technical character.’ But if there is

no commonality between the group of abstract elements on the one hand

and programs on the other, then we will get little help in interpretation of

the program exemption. Pumfrey J has suggested53 that there is actually

little commonality between the items at all:

It is idle to pretend that it is easy to reconcile the different cases on these questions,
but part of the difficulty, I think, is caused by an unspoken belief that the various

48 State Street revisited this with a broad interpretation which may not – on a reading of the
intentions of the ‘founding fathers’ – agree with their original intentions.

49 See G1/83, G5/83, G6/83.
50 Those arguing against software patents make recourse to Art. 52 and suggest that the

Boards of Appeal have ignored its clear language.
51 C. Tapper, Computer Law 3rd edn (London: Longman, 1983), p. 4.
52 Beresford, Patenting Software.
53 Halliburton Energy Services, Inc. v. Smith International (North Sea) Ltd and others [2005]

EWHC 1623 (Pat), para. 212. Jacob LJ takes a similar position in Aerotel, discussed in
Chapter 5.

24 Software and Patents in Europe

excluded matters have something in common. In my view, they do not. They are a
heterogeneous collection, some of which (aesthetic creations) have their own form
of protection, others of which (discoveries, mathematical methods and scientific
theories) have never been accepted as suitable subjects of monopolies on obvious,
but different, policy grounds. The problems are really caused by (c) and (d),
which, by reason of their exclusion ‘only to the extent that the patent relates to
such subject matter . . . as such’ are remarkably difficult to assess in cases lying near
the boundary, particularly as it is difficult to discern an underlying policy. For
example, do we only exclude computer programs as such because computer
programs as such are protected by copyright, like aesthetic creations which can
likewise be used industrially? Or is there some other reason? Whatever the reason,
surely it is not the same as the reason for excluding methods of doing business?

Pumfrey is focusing more upon the policy reasons as to why these

exemptions are grouped together, rather than as to whether there is

some other conceptual grounding for the drafting connection. It is not

difficult to see what that grounding may have been – the fear that a system

which was so close to pure mathematics and logic might have led to

protection of ‘inventions’ which were far from those they believed it was

intended to protect. However, given that the UK had the experience

(from, for example, Slee and Harris54) of viewing software inventions as

‘machine’ such a perspective – that is, that the ‘flood gates’ would open if

software inventions were allowed – is at odds with this UK experience.

There was also a further international element – apart from the PCT –

in that sections of US industry were coming out against software patents.

For example, IBM’s customers were being harassed by holders of patents

which were claimed to protect inventions residing in IBM software. IBM

responded by lobbying:

IBM addressed this problem by lobbying for software to be unpatentable. When
the President set up a commission to study the U.S. patent system, a senior IBM
manager was appointed head of this commission. Not surprisingly, the commis-
sion concluded that software should not be patentable because the patent exam-
iners were not prepared to examine software patents.55

The President’s Commission56 had certainly been influential, focusing

on the practical problems of implementing software examination, a prog-

nosis followed by the Banks Committee in the UK. However, despite

these concerns – and whatever it might have said in Art. 52, EPC – it is

clear that applications involved computer-implemented inventions were

54 [1966] RPC 194.
55 Personal communication, Jim Sprowl. Sprowl was active as a patent attorney during this

period and acted for clients who had purchased IBM bundled software and hardware.
56 President’s Commission on the Patent System ‘To promote the Useful Arts’ (1966) S. Doc.

No. 5, 90th Congress, 1st Session (1967).

Software as machine 25

continuing to be forwarded to the USPTO and to the EPO for examina-

tion. For example, IBM despite its earlier aversion to protection to soft-

ware patents sent an application within a few months of the EPO opening

covering an idea the novelty of which – to my reading – resides very nearly

in the notion of a business system (‘Terminal, and transaction executing

system using such a terminal’57) ‘dressed up’ as machine, and which was

granted by the EPO in 1986.

In 1984 Gert Kolle, a member of DG5 and thus having some insight

into what was happening in the EPO’s examination system (DG2), was

writing that:

The chances of being granted a European patent or a national patent in a
Continental European country are not good. Under the present state of the law
it must be concluded that process and apparatus claims are not considered patent-
able if the difference from the prior art is constituted only by a novel or improved
algorithm or is a related computer or organisational rule, or a computer program
when applied to or carried out by conventional data processing equipment.58

Hanneman, too, at around the same time wrote59 that, ‘[t]he existing

possibilities for obtaining patent protection for computer-related inven-

tions are very limited in Germany’. Clearly, Kolle and Hanneman were

wrong and the very types of application they thought had little chance of

success at the EPO and the Federal Patent Court were sitting in Den

Haag or Munich awaiting successful prosecution. In the next section we

outline why their predictions were errant.

The Boards of Appeal

What is striking about the patent system in Europe is that – despite it

appearing to be chaotic and dispersed through various patent offices and

national courts – it is actually a system which is highly centralised: that

centralisation being around the Boards of Appeal of the EPO. There are

several reasons for this: the move of patent applications from national

57 EP0064592, filed January 1980: ‘One such problem relates to the transmission of lengthy
display messages from the host to the terminal during transaction execution. Because of
this problem a number of predetermined standard messages must typically be stored in
the terminal during initialization of the system, with the system thereafter relying on the
standard messages stored in the terminal for communication with the consumer during
execution of the transactions. In such systems the ability to communicate between the
host and the consumer on [an ongoing], on-line basis and to compose messages custom-
designed for a particular consumer or institution is lacking. Accordingly, it is an object of
the invention to provide an improved transaction execution system.’

58 Kolle, ‘The Patentability of Computer Software’, p. 61.
59 H. W. Hanneman, The Patentability of Computer Software: An International Guide to the

Protection of Computer-related Inventions (Deventer: Kluwer, 1985) p. 203.

26 Software and Patents in Europe

offices to the EPO; the relative autonomy of the Boards of Appeal;

national courts generally accepting the role of the boards;60 and the

impossibility of users appealing decisions to, for example, the Enlarged

Board of Appeal. Note that there has been no appeal on computer-

implemented inventions to the Enlarged Board and requests to refer the

notion of ‘technical effect’ to the Enlarged Board have been refused by the

boards of appeal.61

Also highly relevant is that the Boards of Appeal are given a workload

which covers a specific technical area – which means that by various

means62 a collegiate approach can be taken to the processing of appeals.

For computer-related inventions, the relevant board of appeal has primar-

ily been 3.5.1. The board’s first chance to view an appeal related to

patentability rose in Vicom,63 a case which is still central to European

thinking on ‘technical effect’. The Vicom application was related to a

mathematical method of improving digital images, in particular by improv-

ing the speed of such processing. Images utilise large amounts of memory

because each ‘dot’ (pixel) requires storage for its characteristics: colour

and brightness in particular. A digital image which is 512 by 512 pixels

would, the application suggested, require almost 60 million calculations as

part of the enhancement processing. Clearly, a method of reducing this

load substantially (they claimed a near four-fold increase) could offer

potentially worthwhile time and hardware savings.64 The application,

filed just after the EPO began accepting work, was partly described as

hardware (in the specification’s Figs 1 and 2) but was primarily the

application of a mathematical process. Following normal practice at that

time, DG2 (the examination section of the EPO) refused it since:

(i) it related to a mathematical method which was not patentable by

virtue of Art. 52(2) (a) and (3) EPC;

60 An early example being R. Jacob, ‘Industrial Property – Industry’s Enemy’, in Intellectual
Property Quarterly 1: 3.

61 Board 3.4.1 in T 0603/89 refused to refer a supposed contradiction between the
Guidelines and a proposed BoA decision: ‘However, this question does not need to be
referred to the Enlarged Board of Appeal because the Board of Appeal hearing
the present case considers itself able to answer it beyond any doubt by reference to the
Convention; see also decision J 05/81, OJ EPO 1982, 155. For these reasons, the Board
deems a decision of the Enlarged Board of Appeal as not necessary and the Appellant’s
auxiliary request is refused.’

62 Anecdotally the author has heard that one member of Board 3.5.1 was kept away from
appeals which may have related to ‘technical character’ in the 1980s due to his initial
opposition to the concept. This may or may not be true.

63 EP0005954, ‘Method and apparatus for improved digital image processing’, filed 1979,
T0208/84.

64 For example, a less powerful, less expensive machine could be used resulting in cost
savings.

Software as machine 27

(ii) the dependent method claims 2, 4, 6, 7 did not add technical

features as required by Rule 29(1) EPC; and

(iii) the apparatus claims 8–11 in the absence of supporting disclosure of

novel apparatus were unacceptable in view of Article 52(1) and 54

EPC;

furthermore:

(iv) the Examining Division considered that the normal implementation

of the claimed methods by a program run on a known computer

could not be regarded as an invention in view of Art. 52(2)(c) and (3)

EPC.

These criticisms, essentially, were correct: it was a mathematical method

and despite the attempt to locate a hardware context there was a clear lack

of the accepted ‘technical features’. The applicant appealed this decision

and this became the first of the computer-related inventions to reach the

Boards of Appeal; moreover, since the examiners are required to follow

the decisions of the Boards of Appeal,65 this was their first opportunity to

lay out practice for DG2.

There were three possible directions if they wished the appeal to be

successful. First, the Board of Appeal could accept that this was a sub-

stantial improvement in applied mathematical technology and accept

algorithms as patentable. Second, they could accept that this was a

substantial development in applications software and allow protection

as a program per se. Third, they could accept that the first and second

alternatives were not feasible under Art. 52 and find an alternative sol-

ution. It was this third alternative which they took, essentially using a

combination of the liberal UK approach set out in the UKPO note of

1969 – that is that there is a difference between a program as such, and a

program when run on a machine – and that of the German federal patent

court in BCD-Conversion. This third solution, the board suggested, was

due to the technical nature of a program on a machine:

A basic difference between a mathematical method and a technical process can be
seen, however, in the fact that a mathematical method or a mathematical algo-
rithm is carried out on numbers (whatever these numbers may represent) and
provides a result also in numerical form, the mathematical method or algorithm
being only an abstract concept prescribing how to operate on the numbers. No
direct technical result is produced by the method as such. In contrast thereto, if a
mathematical method is used in a technical process, that process is carried out on
a physical entity (which may be a material object but equally an image stored as an

65 Article 111(2), EPC: ‘. . . that department will be bound by the ratio decidendi of the Board
of Appeal.’

28 Software and Patents in Europe

electric signal) by some technical means implementing the method and provides
as its result a certain change in that entity. The technical means might include a
computer comprising suitable hardware or an appropriately programmed general
purpose computer.

This reasoning – that what is important is the overall technical effect of an

invention – has set the underlying grounds for EPO computer-related

applications and remains European law. It is, though, hardly limpid in its

clarity as many have complained. Indeed, when Van Den Berg – not a

member of this Vicom board but a strong supporter of this technical effect

reasoning in the Boards of Appeal when be became chair of 3.5.1 –

attempted to explain66 the logic behind the technical means framework,

he provided the general framework of Vicom by suggesting:

Generally speaking, an invention which would be patentable according to
conventional criteria should not be excluded from protection merely because
modern technical means in the form of a computer program are used for its
implementation.67

That is certainly a commendable objective, but it is not clear why any

protection still had to be framed in the technical language of the prior

technology. Van den Berg appeared to miss the contradiction which had

been noted by Banks:

The board also pointed out, in addition to the reason already given, that it would
seem illogical to grant protection for a technical process controlled by a suitably
programmed computer but not for the computer itself when set up to execute the
control routine.

To many it would seem illogical not to allow protection for the software itself

when it is set upon on a suitably programmed computer to carry out a

technical process controlled by a suitably programmed computer. It is a

fiction to suppose that the novelty lies in anything other than the software.

Van Den Berg – who was to be chairman of the board which eventually

broached this contradiction and effectively acted as legislator for ‘pure’

software patents – pointed out that the ‘boards of appeal cannot assume

the role of legislator. They have to apply the law as it stands and cannot

strive to meet wishes which are incompatible with the provisions of the

European Patent Convention’.68

66 Ironically in a text dedicated to the decisions of the Enlarged Board of Appeal.
67 P. Van den Berg, ‘Patentability of Computer-software-related Inventions’, in Members

of the Enlarged Board of Appeal of the EPO (Contributors) The Law and Practice of the
Enlarged Board of Appeal of the European Patent Office During Its First Ten Years (Munich:
Carl Heymans Verlag, 1996), p. 33.

68 At p. 45.

Software as machine 29

The Vicom decision was clearly an attempt to locate what was an

algorithmic process which was utilised in a program into a framework of

protection which was not totally suitable. That is, it attempted to distin-

guish between an abstract concept and technical signals. A programmer –

surely being the relevant person skilled in the art – would have difficulty in

agreeing with such a highly artificial distinction. The programmer would

not see the method as abstract at all – it could easily be implemented

directly in a programming language; and he would certainly not be con-

cerned about electrical signals – that would be handled by traditional

input/output hardware. The core of the invention to the programmer is

the processing of the data structure by means of the algorithm: there is

nothing else in the invention of value.

To understand what was happening in the Boards of Appeal we have to

consider their makeup. These are good (thus promoted) patent exam-

iners with engineering expertise69 who are concerned with looking to the

heart of the application and rewarding inventive effort. The debate over

late submitted evidence in oral hearings70 was evidence of that: some

boards were keen that, in order to give as good a decision on the technol-

ogy as possible, they should be enabled to receive this, even if it put the

other side at a disadvantage. This was based on the view that a hearing

was not a court of law, but an investigation into an engineering solution to

an engineering problem. Little wonder that such an approach would find

it difficult to deny novelty and inventiveness to novel and inventive

approaches. That Board 3.5.1 – in the view of even some members of

other boards – were legislating rather than interpreting the EPC was

something which could only be hidden by reference to an obscure and

difficult-to-describe legal concept such as ‘technical effect’. That it is

hard to describe can be seen from the difficulty Van Den Berg had in

explicating it in his article (and also the board in reasoning with it: ‘the

jurisprudence shows that the board’s arguments vary from case to case’71)

and that found by many other commentators in their elucidations. It is

only when we stand back and, rather than using hermeneutics to try to

understand ‘technical effect’, we have instead a less legalistic approach

and see that the Boards of Appeal were using that same approach which

the UK courts had done: integrating the new technologies within the

patent system as a form of old technology rather than accept that it was

69 Mainly, the legal role in any Board of Appeal is minor. See P. Leith, ‘Judicial and
Administrative Roles: the Patent Appellate System in a European Context’, Intellectual
Property Quarterly 1 (2001), 50–99. ‘Engineering’ is used in the widest sense.

70 This was a debate internal to the BoA. See Leith, ‘Judicial and Administrative Roles’.
71 At p. 44.

30 Software and Patents in Europe

actually a whole new and radical technology of its own. That is, they were

describing a new type of machine with the terminology of an old one.

This approach was essentially that if we could imagine the invention as

machine (apparatus or process as essential part of an apparatus), it was

protectable; if not, it was not protectable. This holistic approach to

examining the combined invention worked for many applications but

for those where the invention was based in software, some manipulation

of the way that this was described was required. This also meant that

where the benefit of the invention was to a user of the program, it was – as

Beresford argues of T89/0216 – necessary to remove the user from the

picture completely:

This case thus clearly demonstrates the importance of formulating the claims so as
to specify clearly the structural and functional features of the programmed appa-
ratus which embody the invention, as distinct from steps which are performed by
an operator using the apparatus.72

It was not until the late 1990s that the some of the contradictions were

finally dealt with by Van Den Berg with the IBM decisions (T97/0935

and T97/1173), particularly those which deal with the distinction

between an invention which can be protected in software/hardware

terms and one which can be protected as software alone. The two deci-

sions were also used by the board as a means of outlining their interpre-

tation of Art. 52 and its exemptions. We will look only at one of these.

T97/0935 dealt with an IBM application73 to protect a ‘Commit

Procedure’ which was claimed as a process. A commit procedure is very

common in much programming, particularly of databases. A simple rep-

resentation of the idea is that if Program A (say in an ATM ‘cash

machine’) has collected information together on how much is to be paid

out to the customer, date, time account number, etc. – and perhaps

information from Program C as well – and this has to be saved in a

database on a central computer running Program B. At some point,

Program A will have to make the decision that it has the information and

is ready to pass it all to B: it gives a ‘Commit’ command saying, basically,

‘Go for it’. Usually everything works, but sometimes a fault arises and not

all the information gets to B. This requires further processing to try to get

the error sorted out and all the information to the required program –

particularly if this is a sensitive procedure involving money and requiring

security. IBM’s invention was related to finding a way for Program B to

72 Beresford, Patenting Software, p. 59.
73 This was granted as EP0457112, ‘Asynchronous resynchronization of a commit

procedure’.

Software as machine 31

resolve the problem itself while letting Program A get on with other tasks

(the next customer, for example) rather than waiting for confirmation.74

This is clearly a programming problem, residing in software – since it

makes no difference which kinds of hardware it is run on. Commit

procedures are, in fact, central to software such as SQL (a database

system), which runs on a wide variety of forms of hardware. The hard-

ware is certainly there, but the invention resides in the program if there is

any invention at all.

The application contained a number of claims directed to the method

of implementing the commit procedure (e.g. ‘A method for resource

recovery in a computer system running an application . . .’) which were

held to be unproblematic by the examiner and also to be sufficiently novel

and inventive to be awarded protection. The application, though, con-

tained two further claims:

20. A computer program product directly loading in to the internal memory of a
digital, computer, comprising software code portions for performing the steps of
claim 1 when said product is run on a computer.
21. A computer program product stored on a computer usable medium . . .

which clearly broke the machine metaphor that had been used to date:

that is, that the protection was being requested for the software itself75

rather than as part of a combined hardware/software machine. The

examiner refused these claims and IBM appealed. The arguments used

by IBM were wide ranging, including TRIPS,76 examination practice at

the Japanese and US offices and economic developments.77 However,

technical criteria are of prime interest here, where the examiner took the

view that:

Since the data medium and the program recorded thereon were not technically
related, except for features which were already known for the prior art, the
technical character of the computer program could not be derived from the
physical character of the storage medium on which it was recorded. The technical
character could not be derived from the method or system in which the computer
was used.

74 A process involving two ‘equal’ programs communicating in a highly ordered manner
would be ‘synchronous’ whilst a process where communication is more random (that is,
can be started by either and/or in stop-start mode or where one operates in subservient
mode) is ‘asynchronous’.

75 Claim 20 during operation and claim 21 when stored on disk or other format.
76 World Trade Organization, Agreement an Trade-Related Aspects of Intellectual

Property Rights (TRIPS) 1994.
77 The Board, clearly seeing itself as more than an administrative appeals facility, took upon

itself to confirm its agreement with these arguments, yet stated the decision would be
made on the interpretation of the EPC alone.

32 Software and Patents in Europe

The examiner was thus following prior examination procedure – as out-

lined in the examination guidelines – and declined to provide protection

for a software invention when claimed alone. The board’s decision was,

they decided, to be a review of the Art. 52 (in particular the meaning of ‘as

such’), rather than a review of whether the examiner had followed correct

procedural practice. An outline of the logic which the board followed

appears to be:
* programs are most usually mere abstract creations, lacking in technical

character;
* programs which are abstract creations cannot be protected since they

are programs ‘as such’;
* programs which have technical character are not abstract creations;
* programs which are not abstract creations (that is, have a technical

character) are not programs ‘as such’;
* programs not ‘as such’ can be protected.

This is a reasoning here which a logician might consider to be circular and

which takes us back, as the board suggested, to the main problem, which

is the meaning of ‘technical character’. It was at this point that the board

changed the metaphor of machine to something closer to computing

theory (that is, that software is itself ‘machine-like’) and suggested that

a program itself can be technical, arguing that the prior case law of the

boards supported this view: ‘The case law thus allows an invention to be

patentable when the basic idea underlying the invention resides in the

computer program itself.’78 The board then dropped the fiction that a

patentable invention was in the machine which was part hardware and

part software:

It is self-evident that in this instance the basic idea underlying the invention
resides in the computer program. It is also clear that, in such a case, the hardware
on which the program is intended to run is outside the invention, ie the hardware
is not part of the invention. It is the material object on which the physical changes
carried out by running the program take place.79

It suggested that a view that protection could not be given for the under-

lying program was, the board held, illogical.80 The appeal was allowed,

the application sent back to the examination division and the guidelines

were amended to incorporate this new practice.81

The practice of the examiner to ignore that it was the software which

held the invention was illogical – as viewed by the programmer – but it

78 Para. 7.4. 79 Para. 9.3. 80 Para. 9.8.
81 Guidelines, Part C, Chapter IV, 2. Inventions.

Software as machine 33

was an illogical position into which the board had earlier put itself by

requiring a model of a machine into which software must fit. In Vicom

the board could have used exactly the same thinking to point out

the lack of logic but did not: it gave protection, but only within the

metaphor of traditional machine. The new decision certainly removed

that one illogical factor, while trying to keep other ‘abstract’ inventions

outwith protection – particularly ‘algorithms’ and ‘business methods’.

Unfortunately, as we shall see, allowing protection for software per se

simply opens up other illogical positions which the insightful patent

attorney can attack to benefit his client. For example, the Menashe patent

discussed above shows how a patent attorney can persuade an examiner

that the invention is a ‘technical contribution’. The examiner had raised

Art. 52(2) as a problem during examination82 and the applicant’s attor-

ney replied that, by using the EPO’s own problem and solution approach,

the ‘objective problem’ could be stated as:

(a) How to limit the amount of data transmitted between the terminal and central
computer in an interactive casino game, while at the same time . . .

(b) Providing fair and tamper-proof play of a casino game outside the secure
environs of a casino.

The objective problem so stated clearly does have the required technical nature
required by the EPC.83

The examiner appears to have been persuaded that this was indeed a

‘technical contribution’ and the patent was granted, though someone

more sceptical might read the patent as a ‘business method patent’, which

we have been assured by various authorities is not permissible in Europe.

The missing element: the programmer’s view

What may perhaps seem surprising is that the voice which was missing

from this whole process of consideration of protection was that of the

programmer. This should not be surprising, however from the earliest

days of hardware, the software writer has been kept in the background

and the written history of computing has, for example, been primarily the

history of hardware.84 Yet software developments have been an essential

part of computing’s success, even from those early days. As an example of

82 Examination report, 6 November 1997, Application 94303526.1.
83 Reply to examination report, 15 May 1998, Application 94303526.1.
84 ‘. . . the programmer himself had a very modest view of his own work: his work derived all

its significance from the existence of that wonderful machine. Because that was a unique
machine, he knew only too well that his programs had only local significance and also,

34 Software and Patents in Europe

that development, by the time of the inception of the European Patent

Office many of the standard programming languages – including those

based upon object-oriented programming – had already been pro-

duced.85 These languages developed from Fortran – an artefact which

John Backus has suggested many of those knowledgeable in the state of

the art at the time felt was impossible to produce. And that, too, had been

based upon the original developments of others – for example, Grace

Hopper, who produced the first compiler: ‘I had a running compiler’, said

Grace, ‘and nobody would touch it because, they carefully told me,

computers could only do arithmetic; they could not do programs. It was

a selling job to get people to try it. I think with any new idea, because

people are allergic to change, you have to get out and sell the idea.’86 The

inventive radicalism of this step can be compared with the move from the

Newcomen Engine to that of Watt’s separate condenser, but whilst

Watt’s patent lasted for some 25 years and – some argue – held up the

development of the steam engine,87 Hopper’s work was not protected via

the patent system and was open to all to develop and improve upon – as

proponents of the open source model frequently remind us is the advant-

age of a patent-free technology.

Despite the existence from an early date of this culture and expertise in

programming, when we look at patent applications and the process of

examination, the view which is usually missing is that of the programmer.

It is as though the programmer’s view of technology were considered

irrelevant. This is true – it was not relevant. In the attempt to fit the new

computing technology into an appropriate and patentable classification,

his voice was ignored and the model which was used was that of the

classical ‘machine’. ‘Technical effect’ is essentially a dynamic concept

because it was patently obvious that this machine would have a limited lifetime, he knew
that very little of his work would have a lasting value.’ Dijkstra, ‘The Humble
Programmer’, 859–66.

85 Fortran in 1954, Ada in 1979. See ‘The Programming Languages Genealogy Project’, at
http://www.everything2.com.

86 http://www.thetech.org. Hopper also worked on the development of Flowmatic, which
became Cobol, the business programming language. Note that, later, it was seen that the
software notion of a compiler could also be used to produce hardware – see K. Keutzer
and W. Wolf, ‘Anatomy of a Hardware Compiler’, Proceedings of the SIGPLAN ’88
conference on Programming Language Design and Implementation (1988) pp. 95–104,
in which they claimed to have used to design chips with 30–60,000 transistors.

87 The argument is that Watt’s supremacy in the field (because he controlled the technol-
ogy) led to a lack of research and development so that even after the patents expired John
Farey, an early patent agent (1827), could write: ‘Men of superior intellect, who might
have been induced to investigate the subject, have been led to suppose that nothing
further remains to be perfected . . .’ See H. I. Dutton, The Patent System and Inventive
Activity During the Industrial Revolution, 1750–1852 (Manchester: Manchester University
Press, 1984) for a more rounded picture of Watt, Farey and early patent activity.

Software as machine 35

which mirrors the definition of ‘machine’ suggested by Reuleaux: ‘A

machine is a combination of solid bodies, so arranged as to compel the

mechanical forces of nature to perform work as a result of certain deter-

minate movements.’88 The legal requirement in European patentability

has thus been looking for a change of physical state, which usually

accompanies work effected. This is not a programmer’s conception of

the machine: work is not the output of the new technology, but rather it is

the processing of information, a procedure which involves no Reuleaux-

like work performance except moving the contents of one data structure

to another, as occurs in IBM’s asynchronous commit procedure.

To the programmer there was a different kind of machine which was

highly relevant and had dominated their world since many programmers –

after the 1950s and the work of Hopper et al. – had successfully moved

away from consideration of the machine as such, to consideration of the

machine as tangible yet virtual. Thus the development of operating sys-

tems had advanced to the point where ‘virtual machines’ were the order of

the day – a self-contained operating environment behaving as if it were a

separate computer – which (despite the nature of the underlying imple-

mentations) allowed the programmer to see the software as a machine

into which he could insert data processing tasks. For example, the Virtual

Machine – an IBM mainframe operating system – was originally devel-

oped by its customers and eventually adopted as an IBM system product

(VM/SP) running multiple operating systems (OS) within the computer

at the same time, each one running its own programs. A virtual machine is

the construct of a program that behaves like a real machine, so that an OS, or

other program written to run alone on a real machine, runs as though on

the hardware itself:

Creasy and Comeau spent the last week of 1964 joyfully brainstorming the design
of CP-40, a new kind of operating system, a system that would provide not only
virtual memory, but also virtual machines. They had seen that the cleanest way to
protect users from one another (and to preserve compatibility as the new System/
360 design evolved) was to use the System/360 Principles of Operations manual to
describe the user’s interface to the Control Program. Each user would have a
complete System/360 virtual machine (which at first was called a ‘pseudo-
machine’).89

88 F. Reuleaux, The Kinematics of Machinery: Outline of a Theory of Machines (1876) reprinted
(New York: Dover Publications, 1963) p. 35, available online at http://historical.
library.cornell.edu.

89 M. Varian, ‘VM and the VM Community: Past, Present, and Future’ (1997), available
online at http://www.princeton.edu/~melinda/25paper.pdf (see p. 10).

36 Software and Patents in Europe

To the programmer working on the design of a data object or a procedure,

the task is tangible: the programmer views the objects he is dealing with as

physical entities – we see this clearly in the use of diagrams by computer

scientists when they explain what they are trying to do (particularly when

they communicate with each other). The programmer is building a

machine with the same mode of thinking as the eighteenth-century mill-

wright John Rennie placing iron cogs and drive wheels in relationship to

the power source at the Albion Mill90: that is, as a physical and tangible

system – even though the actuality is non-physical and intangible. Where

Rennie was concerned with reducing friction and maximising power use

the programmer – especially in the early days – was concerned with

reducing memory usage and maximising throughput to the processor.

The thinking was the same, but the nature of the machine differed

substantially – one tangible, one virtual.

The histories of programming which are now beginning to appear

validate the view that real inventive advances can be found in software

as such, rather than in some amorphous ‘machine’ of the patent examiner.

See, for example, Per Brinch Hansen’s history of concurrent program-

ming,91 which emphasises invention at the conceptual (i.e. virtual) level.

Concurrent hardware is easy to build (simply attaching a number of

processors in parallel, for example) but what remains difficult is the

software control of this hardware, and that the inventive element – if it

exists – lies with the software researcher and developer rather than the

hardware engineer. Reading these histories we see that – just as in devel-

opment in the sciences – terminology and definition of concepts are at the

heart of invention.

It was this situation – where software was being seen as an immensely

powerful and malleable system – which the patent system was attempting

to control. Basically, a new form of technology had developed and despite

the rhetoric of the patent system that its goal was reward for new techno-

logical development, the system was only prepared to accept this new

technology on the basis of nineteenth-century notions of machine, not

in the new manner in which the programmer saw this new machine.

Such legal fictions led to contradictions at the heart of the patent exami-

nation system – to protect one artefact by basing it upon the metaphor

of a different artefact must lead to problems – which are difficult to

90 See S. Smiles, Lives of the Engineers, with an Account of their Principal Works: Comprising
Also a History of Inland Communication in Britain (London: J. Murray, 1861–2).

91 P. B. Hansen, ‘The Invention of Concurrent Programming’, in P. B. Hansen, (ed.), The
Origin of Concurrent Programming: From Semaphores to Remote Procedure Calls (New York:
Springer-Verlag, 2002), pp. 3–61.

Software as machine 37

uphold and thus we had Vicom and the later Board of Appeal decisions.

But these later decisions too have contradictions at their core and we must

wonder whether they can continue to hold against the pressures desiring

protection for the various kinds of technologies based upon this new

rampant model of virtual machine upon which has developed a new

technology.

38 Software and Patents in Europe

2 Software as software

The time will come when manufacturers will give away computers so as to be
able to sell software.1

Introduction

In the preceding chapter we looked in overview at how software had

been viewed by the patent system prior to the IBM decisions (T 1173/97

and T 935/97) and noted that the system’s emphasis upon integrating

‘computer-related inventions’ within the framework of a tangible, phys-

ical machine ignored the perspective which the programmer has of this

new technology. This is not to say that there is one single programmer-

centric perspective which we might simply persuade those in the patent

system to adopt in their discussion of technology: far from it. However,

we can paint a reasonably accurate picture of how programmers view

their technology and note where there is a divergence between the

technical and the legal.

The point of painting this picture is that it should allow us to mould our

legal perspective upon a more truthful model of software than that of a

‘soft’ hardware device. Lawyers have – Shklar suggested – a legalistic view

which encourages the belief that legal reasoning can meet and overcome

the challenges set by all other disciplines:2 perhaps this is so, but there is

1 H. Aiken, reported in I. B. Cohen, Howard Aiken: Portrait of a Computer Pioneer
(Cambridge, MA: MIT Press, 1973), p. 244. We are not there yet – but OS and ‘office’
software can now cost more than the hardware upon which it runs. There are also
instances where software is given away free and profit is made through provision of
services – for example, in the open source ‘marketplace’ – which demonstrates
further that hardware is becoming of lesser value to the market than it was in the period
when the EPC was being constructed.

2 J. N. Shklar, Legalism – Law, Morals and Political Trials (Cambridge, MA: Harvard
University Press, 1964): ‘Law is endowed with its own discrete, integral history, its own
‘‘science,’’ and its own values, which are all treated as a single ‘‘block’’ sealed off from
general social history, from general social theory, from politics, and from morality . . . it
aims at preserving law from irrelevant considerations . . .’

39

anecdotal evidence that these other fields are not always persuaded of

the power of purely legalistic approaches. In a research interview, one

London IP lawyer rued the fact that she spent considerable time prepar-

ing cases for her IT clients only to find that, on their first appearance

before the judge, the latter’s lack of IT knowledge caused such anxiety in

the parties that they quickly came to agreement or headed off to arbitra-

tion. These were not patent cases but in many European countries patent

hearings will be held in front of non-expert judges – little wonder that one

of the fears of the Community Patent has been that of forum shopping by

litigants.3 The best law is that where irrelevant considerations are held at

bay, but relevant ones are taken seriously – and in the field of patent-

ability, the nature of software is a relevant issue every bit as much as the

nature of DNA is in genetic patenting.

The question of the relationship of law and science is something which

has become of interest to researchers over the past decade or so, and

writers such as Jasanoff 4 have pointed to the difficulties found when two

systems which claim authoritative roles – law and science – meet in the

courtroom. This confluence is difficult enough in Europe, where it is the

norm to hear debates about inventions in front of judges, but in the US

the position appears – to this author – to be very much worse, with an

expectation that a jury of peers, perhaps with limited contact with science

and technology in their education and little understanding of how the

many basic electronic tools operate (the mobile phone, for instance), will

be able to decide upon the claims made in advanced technology dis-

putes.5 Those countries which utilise specialist judges in validity matters

(UK and Germany, for example) may have an advantage over other

approaches, but there are still problematical areas, for example over the

role of expert witnesses when the field discussed is outwith the direct

3 ‘Many witnesses could not accept the risk that a patent could be invalidated by any
national court. Their concern is that the judge might not have sufficient knowledge and
experience of patents’. The Community Patent and the Patent System in Europe, Select
Committee on the European Communities, House of Lords, Session 1997–98, 26th Report,
HL Paper 115, para. 85.

4 S. Janasoff, Science at the Bar: Law, Science and Technology in America (Cambridge, MA:
Harvard University Press, 1995).

5 ‘Honest to God, I don’t see how you could try a patent matter to a jury. Goodness, I’ve
gotten involved in a few of these things. It’s like somebody hit you between your eyes with a
four–by–four. It’s factually so complicated.’ Quoted by K. A. Moore, ‘Judges, Juries, and
Patent Cases – An Empirical Peek Inside the Black Box’, 98 Mich. L. Rev. (2000), 365.
A. B. Jaffe and J. Lerner, Innovation and its Discontents: How Our Broken Patent System is
Endangering Innovation and Progress, and What to Do About It (Princeton: Princeton
University Press, 2004), are also highly critical of the role of juries in the US system.
They blame the CAFC.

40 Software and Patents in Europe

expertise of the judge.6 In research interviews in London this author was

told of dashes by litigators to get their hands on the most prestigious

expert witnesses before the other side got them. It was best, I was told, if

they had won a Nobel Prize. The witnesses – academics – appeared more

than happy to drop whatever they were doing and become well-paid

proponents for parties who paid the piper, leaving the judge with the

task of analysing the value of their scientific contribution to the litigation.

The authors of Terrell point to the complaints of patentees that the

witnesses are considerably over-skilled given that the reader of a patent

is someone generally skilled in the art, rather than being at the very top of

the scientific hierarchy.7 The recent procedural rules in the Patents Court

in London can be seen as an attempt, in part, to mitigate such problems: a

skeleton argument document8 must be prepared and agreed by the par-

ties in which, in effect, they point to areas where their respective experts

disagree. A different and decentralising approach is one where expert

judges might be utilised, for example, drawing them from the Boards of

Appeal of the EPO,9 or – using a more centralised approach – setting up a

distinct European Patent Court with expert judges as promoted by the

EPC member state Working Group on Litigation,10 which has proposed

a draft statute that includes no mention of expert witnesses.

Even for courts such as those in London, where there exist judges

with patent expertise and access to a long-established patent office,

expert witness input to litigation can be problematic. In Halliburton’s

application11 to have their patents re-registered, the court noted the

6 See also Cantor Fitzgerald International v. Tradition (UK) Ltd and others [2001] EWCA
Civ 942, with discussion of a problem caused by an expert witness in a software copyright
case (see para. 70): ‘But I was left with the strong feeling that Mr Wise was acting as an
advocate.’ Per Pumfrey J.

7 S. Thorley, R. Miller, G. Burkill and C. Birss, Terrell on the Law of Patents 15th edn
(London: Sweet & Maxwell, 2000). The authors state (at para. 6.25): ‘However, the
courts have generally found it very helpful to have the best possible guidance from
persons steeped in the art, and have been able to make allowance where necessary.’

8 Para. 11 of The Patents Court Guide, Issued 12 November 2003, states: ‘Further the
parties should endeavour to produce a composite document setting forth the matters
alleged to form part of the common general knowledge and, where they disagree, what
that disagreement is.’ Also see paras. 12, 13 and 14. Available at Court Service website:
http://www.hmcourts-service.gov.uk/infoabout/patents/crt_guide.htm

9 P. Leith, ‘Revision of the EPC, the Community Patent Regulation and ‘‘European
Technical judges’’’, European Intellectual Property Review 23(5) (2001), 250–4.

10 Working Party on Litigation, Draft Statute of the European Patent Court (16 February
2004), available at the EPO website:

11 Halliburton Energy Services Inc v. Smith International (North Sea) Ltd and others [2006]
EWCA Civ 185. The practice was further clarified at appeal. See Halliburton Energy
Services Inc v. Smith International (North Sea) Ltd and others [2006] EWCA Civ 1715,
where it was stated (at para. 7) that: ‘We envisage that in the future, where a scientific

Software as software 41

problem of finding – given that only one party would be represented –

suitable expertise to provide some opposition to the patentee.12

In computing, the field has become so broad that it is impossible for

a computer scientist fully to appreciate what is happening in all the other

sub-fields: how can someone involved in database query language design

understand the constraints under which compiler designers operate, and

how can either get to grips with the use of formal definition methods in

program verification? Clearly they can, but only by following a process

similar to that of a contract lawyer who wishes to become an expert in

computer crime: that is, by becoming an expert in the required field

itself. Having said that, there is a commonality between all these different

areas – that is, the task of programming. All sub-areas of computing

require expertise in programming as the basis of their other expertise.

Programming is thus a core element in understanding computing and, if

we wish to take software seriously in the courtroom, we need to have an

understanding of the programming process.13

In Chapter 5 I will look more closely at the particular nature of algo-

rithms with respect to legal interpretation, but here simply use the notion

of ‘a sequence of steps’ which is translated into a textual program.

What underlies programming?

A programmer always works with a virtual environment – that is, a ‘world’

moulded either by himself or by others. It is easiest to see this world as a

model constructed in the mind and transferred over to code. As Perlis

suggested:

adviser is appointed, a similar record of the part he or she has played will normally be
provided to the parties with, of course, also an opportunity being given to them to
comment on it.’

12 Jacob LJ: ‘That is whether or not this court should have the assistance of a scientific
advisor. [Halliburton] said, undoubtedly. In those circumstances, it obviously makes
sense to direct there should be such an adviser in principle. [Halliburton] suggested that
one need not go to the level of a Fellow of the Royal Society or the like, but maybe
assistance could be provided by a patent office examiner if the Comptroller is not going to
appear. The patent office does not know whether they could provide any such person.
What is clear is that if any person is provided, whether from the patent office or elsewhere,
is that the costs of that provision would also fall upon the patentees.’ In the event,
Professor David Limebeer, Head of the Department of Electrical and Electronic
Engineering and Professor of Control Engineering at Imperial College London, was
appointed.

13 From the late 1980s until 2004 the author ran an LLM in Computers and Law where
students were required to undertake quite substantial programming tasks as part of the
degree. This confirmed my conviction that technical understanding is essential to under-
stand law and technology.

42 Software and Patents in Europe

Every computer program is a model, hatched in the mind, of a real or mental
process. These processes, arising from human experience and thought, are
huge in number, intricate in detail, and at any time only partially understood.
They are modelled to our permanent satisfaction rarely by our computer
programs.14

Such an insightful description will immediately strike a chord of recog-

nition in the programmer, but it is unlikely to do so in the mind of the

lawyer. Given that the latter could fail to pick up the subtleties which

Perlis has compressed into this paragraph, we need to decompress his

description and make it accessible. We will do so by utilising a thought

experiment based upon early computing technology in the context of

current law. The advantage of this is that we have a much-simplified

view of the programming process (but one which was essentially histor-

ically accurate and comprises the core which is still present in program-

ming) which lets us more easily examine the link between programming

and patent and other legal protections. However, we need to remind

ourselves that this example problem is simply a useful way to understand

the nature of programming. Few programs written today are in any way

related in size to our example – quite the reverse. A major problem for

computing now is how to manage complexity caused by size of program, a

problem which was evident even as early as the late 1960s and 1970s.

Dijkstra clearly linked it to the advances in hardware, but it is a problem of

complexity which has now outgrown that of hardware, the latter being

more readily conceptualised. The inventor of the solution to the ‘software

crisis’ – the name given in the 1970s to the failure to be able to produce

programs on time, to cost, and which do what they are intended to do –

should surely be rewarded:

[T]he major cause [of the software crisis] is that the machines have become
several orders of magnitude more powerful! To put it quite bluntly: as long as
there were no machines, programming was no problem at all; when we had a few
weak computers, programming became a mild problem, and now we have gigan-
tic computers, programming has become an equally gigantic problem.15

The problem

The technical problem is that of manipulation of objects in a hazardous

environment – the first nuclear power stations in the late 1950s used

14 Foreword to H. Abelson, G. J. Sussman and J. Sussman, Structure and Interpretation of
Computer Programs (Cambridge, MA: MIT Press, 1985).

15 E. W. Dijkstra, ‘ACM Turing Lecture: The Humble Programmer’, Commun. ACM
15(10) (1972), 859–66.

Software as software 43

trained monkeys16 to manipulate the different shapes of nuclear materi-

als within the maximum radiation zone. These materials were prepared

in the shape of pyramids, cubes and balls. The monkeys were trained to

understand that only certain objects could be placed on top of other

objects: balls can only be placed upon the table (i.e. they cannot be

placed upon cubes or pyramids) and cubes cannot be placed upon

pyramids. Nothing can be put on top of balls. Blocks can be stacked

to a maximum of five high.17 The monkeys have been effective but,

unfortunately, do not appear to live long and the training expenses are

continual. Also, there are some worries from the nuclear health and

safety inspectorate that not all monkeys may be able reliably to count

above four. Newly invented mechanical robotic devices are being seen

as replacements for the monkeys but their mechanical nature means

that they require control from outwith the radiation zone. A computer

program, we have radically suggested, could be utilised to control the

newly invented forms of robotic arm (Fig. 2.1) and also ensure correct

material handling. Further, we tell them that, by using a computer, the

various moves taken can be stored on external media for future refer-

ence and analysis.

Possible solutions

A programmer – on meeting this problem – would immediately begin to

consider a number of options. In classical programming,18 where the

definition of a program is:

Program¼AlgorithmþData Representation

the programmer would probably think first about how the data represen-

tation (or ‘data structure’) of the problem space could be modelled. That is,

how a computer-oriented representation of the information to be stored

and manipulated could be arranged. The non-programmer would expect

discussion of the algorithm to be primary, since this is the aspect which is

mainly discussed, particularly in patent matters. However, for many

programs the actual algorithm relates to well-known steps which are

16 To the best of the author’s knowledge, monkeys were never actually used in such a role.
17 A computer scientist would recognise the ‘blocks world’ problem used by early AI

researchers. See J. Slaney and S. Thiebaux, ‘Blocks World revisited’, in Artificial
Intelligence 125 (2001), 119–53 for a recent discussion. This author has also used it in
teaching formal methods. See P. Leith, ‘A Programmed, Skeleton Formal Specification
Method:, The OUFDM’ Computer Journal 30 (4) (1987), 337–42.

18 Usually referred to as ‘procedural programming’ and most easily described by flowcharts
to represent the steps in the procedures.

44 Software and Patents in Europe

to be taken, and involves moving, comparing and sometimes doing cal-

culations on the data representation. Thus the first task in programming

is usually to design the data representation which best mirrors the prob-

lem in the real world. There are many possible representational solutions.

For example, the solution could be modelled as a data table with locations

being used to represent positions on the nuclear table and blocks stored

on it, as in Fig. 2.2.

Of course, we could also do essentially the same thing in ‘hardware’

terms and would need just a few bits for each entry and use binary

representations for each entity with each table position being occupied

53

52

51
50

40
46

W

42

48
44

43

41

41L

41?

43?

42?

40°

41S

39

47

45°44?

49 45

Fig. 2.1. US202449 Article Manipulation Device (filed 1963)

Software as software 45

by sixteen bits.19 If we then give the cube the value of 1, the cylinder 2,

and the ball 3, then the first memory location might contain the value

11223 (in binary – 10101111010111). Thus, for each location we use a

digit to represent the nuclear materials, and we know that a location

which holds 11223 has two cubes, two cylinders and a ball in the column.

Alternatively, we could use a tree structure, which is a slightly more

abstract model but can be implemented so that it is actually held in the

hardware format just outlined, although we think of it as being a different

model as in Fig. 2.3.

There are other ways in which the programmer could conceive of

handling this information. Given that our problem is located in the early

1960s, we could store this information outwith the machine on paper

cards or tape and run these back through the machine when required,

but that would involve more user actions than we might want. Other, non-

classical, programming techniques, such as object-oriented programming

(OOP), could also be utilised, but since techniques such as OOP were

developed later in the 1960s, we shall not discuss these at present.

For each of the different data representations, we can use a relevant

algorithm for manipulation. Thus our basic algorithm for the table might be:

1. Accept user input.

2. Test whether there are free spaces in table at required position.

Table Position 1 Ball

Table Position 2 Cube Ball

Table Position 3 Cube Cube Cube Pyramid

Table Position 4 Cube Ball

‘‘

‘‘

Fig. 2.2. A table-based data structure

Table

Cube Cube Ball

Fig. 2.3. A tree-based data structure

19 Computer organisation is based upon multiples of two due to its being a ‘binary’
machine.

46 Software and Patents in Europe

3. Test whether object in position allows insertion.

4. If test in steps 2 and 3 ok, then insert at position.

The tree structure algorithm, on the other hand, would involve moving

over the tree to find out what the other ‘branches’ contained.20 In effect,

we are performing the same task with each of the algorithms but – as

expressed – each algorithm is different, in that one is manipulating a table,

one a tree and one a computer word. Since each one reflects a different

model, it will be expressed in textual or diagrammatic terms as different

from the other algorithms.

What are we to make of this? Exactly the same information is being

processed (where objects have been placed) but there are a variety of

different models being used by the programmer to solve the problem of

how to represent the data. It is important to realise that these models

become reality for the programmer – he moves from setting up the virtual

objects to their being the world in which he sites himself. When we move

from simple block world programs to more complicated programs, the

complexity of these virtual worlds with virtual data representations

becomes a significant problem to the programmer. Why? Primarily,

because the virtual representations are representations of a more complex

world and these are – as Perlis pointed out – often worlds which are only

partially understood by the programmer. Also, a program which is pro-

duced by one programmer and his own personal visual representation

becomes a qualitatively different object when it involves a team of several

hundred who are located in various parts of the world and – in terms of

program maintenance – in time measured over decades.21

The programmer handles this complexity by:

1. arranging a specification of the problem – the more complex the

problem, the more formal the specification should be, some suggest;

2. producing a solution in terms of a virtual world which matches this

specification;

3. using programming tools which are designed work with the objects in

this virtual world (e.g. Cobol for business programming).

The success of this methodology is not guaranteed. For example, in

business applications of the computer, the systems analyst’s role is to

produce a specification, but since this is carried out through document

analysis and interview, it may miss out on important (tacit) information

about the processing and why certain tasks are done in certain ways. This

20 Tree traversal is one of the fundamental tasks in computing.
21 The ‘Year 2000 problem’ was due to much code still containing earlier pieces of program

which had been written when memory was scarce and saving a few bytes was a valuable
programming technique.

Software as software 47

faulty specification then becomes the basis of the solution. In the 1960s

many business applications were simple billing-type problems and related

to the manipulation of accounting records, so that the programming tool

used was mainly Cobol, a programming language where the virtual objects

were ‘files’, ‘records’ etc. But as the machines have become more powerful

(allowing ever-larger programs), the programs too have become more

complex and the difficulty of specifying problems has risen substantially.

In simple terms what we have are two parallel worlds: the real world in

which the eventual program is to be located and the virtual world of the

programmer. As Perlis suggests, sometimes, these two worlds do not

totally meet.22 What is important is to realise that one programmer’s

virtual model, which implements exactly the same model as another’s,

may appear to be very different indeed if examined via its internal struc-

ture. This is part of the problem inherent in software patent examina-

tions, where a software description will differ from that of an engineering

artefact such as the robot hand above, the latter lacking the conceptual

malleability of programming.

Our user input will be a formal program, but one which is interpreted

rather than compiled – that is, the user types in one line of the desired

program at a time and this is executed immediately by our interpreting

program.23 In simple problems such as nuclear materials handling this is

a sufficiently effective procedure and uses the same interpretative tech-

nology as Lisp, a programming language designed in 1958.24 The formal

definition25 of our language is laid out in Fig. 2.4.

The user will input (using the DATA statement) to the terminal

information first about what blocks are available and their names:

DATA BLOCK1 CUBE

DATA BLOCK2 BALL

22 Linus Torvalds – innovator of Linux – has suggested, ‘A ‘‘spec’’ is close to useless. I have
never seen a spec that was both big enough to be useful and accurate. And I have seen lots
of total crap work that was based on specs. It’s the single worst way to write software,
because it by definition means that the software was written to match theory, not reality.’
Published email, September 2005. See http://www.kerneltrap.org.

23 A compiler translates a complete program into machine code before execution, an
interpreter translates into machine code one line at a time. BASIC is an example of a
language which allows both. The model of interpreter is very useful in debugging where
single steps can be taken to find out where bugs lie.

24 Though given its novelty and inventiveness, ‘designed’ may not be the best
description. See J. McCarthy, History of Lisp (Artificial Intelligence Laboratory,
Stanford University 1996), available online at http://portal.acm.org/citation.cfm?
id=808387&dl=ACM&coll=portal

25 This definition sets out the syntax – but not the semantics of the language – using BNF, a
standard description method for languages used first to define Algol 60. There is some
debate over whether the 1959 ‘inventor’ was John Backus (thus Backus Normal format)
or whether Peter Naur was involved (Backus Naur Format).

48 Software and Patents in Europe

If this is syntactically correct, then our interpreter will accept it and further

statements about blocks to be accepted. CLEAR is input to tell the pro-

gram that we are about to start manipulation (or to remove all blocks at

once). PLACE, PUT and TAKE are used to manipulate the blocks:

PLACE BLOCK1

PUT BLOCK2 ON BLOCK1

TAKE BLOCK2 FROM BLOCK1

The interpreter will return an error message to the user in this example,

since it tests that a ball cannot be placed on a cube and refuses to execute

the statement. The LOOP/REPEAT statement is useful to save retyping

if we want to build several blocks upon each other. SAVEMOVES is a

command which will write the moves made to a backup storage device

(tape perhaps) thus becoming part of a database for future reference.

Where is the algorithm?

To read some legally oriented articles on software patents, one might get

the feeling that the algorithm is the most important element in software

and the only element which might require protection.26 That is not true,

<PROGRAM> ::¼<DATABLOCK>- - CLEAR- -

<INSTRUCTIONBLOCK>
<DATABLOCK> ::¼<BLOCKDESCRIPTIONI>

<BLOCKDESCRIPTION>- -

<DATABLOCK>
<BLOCKDESCRIPTION> ::¼ DATA- - <BLOCKNAME>- - <TYPE>
<BLOCKNAME> ::¼ BLOCKþ<DIGIT>
<TYPE> ::¼BALL- - CUBE- - PYRAMID
<INSTRUCTIONBLOCK> ::¼<INSTRUCTION> | <INSTRUCTION>- -

<INSTRUCTIONBLOCK> |
<INSTRUCTION> ::¼ CLEAR | SAVEMOVES | <PLACEINSTRUCTION> |

<PUTONINSTRUCTION> |
<TAKEOFFINSTRUCTION> | <LOOPINSTRUCTION>

<PLACEINSTRUCTION> ::¼ PLACE- - <BLOCKNAME>
<PUTONINSTRUCTION> ::¼PUT- - <BLOCKNAME>- - ON- - <BLOCKNAME>
<TAKEOFFINSTRUCTION> ::¼TAKE- - <BLOCKNAME>- - FORM- - <BLOCKNAME>
<LOOPINSTRUCTION> ::¼ LOOP- - <DIGIT>- - TIMES- -

<INSTRUCTIONBLOCK>- - REPEAT
<DIGIT> ::¼1 1 2 1 3 1 4 1 5

Fig. 2.4. The Nuclear Blocks Handling Language

26 D. S. Chisum, ‘The Patentability of Algorithms’, 47 U. Pitt L. Rev. (1986), 959, for
example, does not put algorithms into any real programming context.

Software as software 49

since in many programs the algorithm follows from the choice of data

representation. Of course, we could write a program and do analysis of

how it performs which will help us improve the algorithm if necessary

(and perhaps change the data representation) so that bottlenecks in

processing can be speeded up. One example of this would be the ‘inven-

tion’ of the ‘single pass’ compiler which runs over program code chang-

ing it into machine code in, as the name suggests, one pass27 rather than

the earlier two or three passes. An example closer to the lawyer of the

interlinked nature of algorithm and data structure is the way that legal

texts are held in systems such as Lexis, Westlaw or Bailii: here each

document is processed and each relevant word is indexed as to loca-

tion.28 We can apply many different algorithms to the same data struc-

ture but each is bound to the particular way that we initially chose to

index words.

Our example above reflects normal programming: that is, that the

algorithm and data representation are intrinsically linked together. For

example, the algorithm which we will use to manipulate the blocks

depends upon how we represent these blocks. If we have a patent system

where algorithms are protectable, surely we should have protection for

data representations too? And, conversely, if we can protect data struc-

tures, then surely algorithms must likewise be protected? And if both of

these can be protected, can we go one step further and protect the mental

models (the ‘ideas’) upon which they are based?

Communicating the virtual worlds – the ideogram

The ‘article-manipulation device’ (above) shows the basic elements of

engineering description by using visual representation. We can see the

form of the object; can basically work out how it fits together and see that,

while we may not be able to tell details of the thread forms, gearing and

motor power or rpm required, we can get sufficient information to under-

stand the idea at a glance. This is important, since it is usually the idea

which is being protected by the patent system rather than the specific

manufacturing tolerances (though aspects of that, too, may be developed

to become ‘inventive’). Engineering drawing itself rather than that used in

patent specifications is a highly organised and developed process with its

27 Changing the algorithm here certainly speeds up the initial production of machine code,
but does it by producing less efficient code and requires a language to be designed in such
a way (i.e. with suitable data representations) allow this. It also requires larger memory
resources than was available in the earliest machines.

28 See P. Leith and A. Hoey, The Computerised Lawyer, 2nd edn (London: Springer-
Verlag, 1998).

50 Software and Patents in Europe

own visual grammar and standards29 and will detail the relevant informa-

tion relating to tolerances, materials etc. The same is true of chemical

descriptions where there is a visual language which describes the structure

and/or nature of processes and compounds (this can either be a diagram or

a word which represents the structure of the compound). For example,

Roy Plunkett’s Teflon patent (US 2,230,654, 1941) was able to utilise the

single word ‘Tetrafluoroethylene’ to describe exactly the compound

which he had been able to polymerise.30 Electrical and electronic specifi-

cations utilise a commonly accepted grammar which both indicates well-

known outline functions (‘op amp’, say) and specific implementations.

Generally, the situation with regard to the visual depictions of the main

technical fields supported by the patent system is that there are well-

accepted and well-understood ways of communicating the underlying

ideas. These means help reduce possible misinterpretation of the applica-

tion and, if granted, also make the specification less liable to misreading.

This, unfortunately, is not the case with computing – there is little

agreed language or visual form of representation to describe the virtual

worlds which the programmer builds. In large part this has been due to

the freedom which programmers have had in developing their ideas with

no central authority (or ‘institute’, to use the Victorian concept) which

has moulded the terminology to date. For example, even a very simple

programming concept – which is usually now referred to as ‘a stack’

because items are added to it on the top and taken off only from the top

again (as in Fig. 2.5) – has had a chequered history of naming.

Donald Knuth – in his attempt to bring some formality to computer

science – noted that:

Many people who realized the importance of stacks and queues independently
have given other names to these structures: stacks have been called push-down
lists, reversion storages, cellars, nesting stores, piles, last-in-first-out (‘LIFO’)
lists, and even yo-yo lists!31

Ball
Cube
Cube
Cube

Data added to/removed
from top only – thus the
‘stack’ quality.

Fig. 2.5. A stack data structure

29 For example, BS 8888 is a British drawing standard which includes European standards.
30 Claim 1 – in total – simply referred to ‘Polymerized tetraflouroethylene’.
31 D. Knuth, Fundamental Algorithms: The Art of Computer Programming 2nd edn, vol. 1

(Reading, MA: Addison-Wesley, 1973), p. 236.

Software as software 51

Knuth argued that these were errantly called ‘push-down’ and ‘pop-up’

stacks or lists because, though convenient for brevity and analogy, they

‘falsely imply a motion of the whole list within computer memory’32 but

the terminology remains in use.33 The related data structure, the queue

(which mirrors a stack but where data is put onto the top of the stack

and removed from the bottom) was also noted by Knuth to have been

called a circular store or first-in-first-out (‘FIFO’) list, descriptions

which have still not totally withered away.34 The objection that Knuth

has to this description may have been that he was keen that program-

mers had an understanding of the hardware underlying any program: in

his multi-volume Art of Computer Programming, he specifically chose a

language for his examples which reflected machine level programming,

since: ‘a person who is more than casually interested in computers

should be well schooled in machine language, since it is a fundamental

part of the computer’.35 In machine language terms, there is of course

no such thing as a stack which looks like a pile of dishes awaiting

cleaning:36 there is a data location with one associated list pointer

(another data location) which points to the next data location on the

list. A further single pointer/data location points to the last data location

of the stack. Many programmers today – I suspect – would have little

real understanding of what is happening at the machine level, either in

hardware or in terms of basic software processes, since they are working

at a higher level of abstraction; that is, with a different virtual model

from Knuth. The ubiquity of the stack model has meant that it has been

included at the abstract level in programming languages so that pro-

grammers can work with it without having to be concerned with the

implementation details (and that implementational virtual model).

Further, some languages such as Forth and PostScript are entirely

based upon a stack model.37

Computing definitions continue to be problematical and the field lacks

a coherent and respectable dictionary of terms. The US Patent Office,

worried by the fact that Wikipedia.org was editable by its users, took the

decision to disallow patent examiners to use the system due to the fear

that it allowed the prior art and interpretation of past technology to be

32 P. 237.
33 See, e.g., EP1247168, ‘Memory Shared Between Processing Threads’, granted 2004.
34 See, e.g., US 7,013,366, ‘Parallel search technique for store operations’, granted 2006.
35 Knuth Fundamental Algorithms, p. x.
36 This is a very common analogy used in teaching basic computer science.
37 Proponents claim the advantage of having no syntax checking to do – the syntax is

essentially the data structure. Any program algorithm is always partly embedded in the
language/data structures of that language.

52 Software and Patents in Europe

amended easily.38 Critics of the USPTO noted that this was just the kind

of user-based system which had been proposed by IBM and others to help

solve the prior art searching problem.39

Stacks and queues are at the very lowest level of data format and to a

very large extent the computing community has developed a relatively

clear understanding of what the data representation is and what it means,

at least when applied to relatively simple applications. Much of this

common understanding has come from images which simplify the con-

cept and give a ‘core meaning’ in discussions amongst programmers, and

have also become the manner in which patent applications are prepared

for computer-related inventions. These images have been used, too, in

the description of algorithms where flowcharts show the step by step

procedures involved in the program, albeit again usually at the abstract

model level rather than detailing actual implementations.

Because the models are difficult to describe textually in any precise

manner (which might explain the lengthier nature of software patent

specifications), these images have become ideograms which both reflect

the underlying object and also affect its meaning. Fleck used the notion of

ideogram to describe the manner in which the conceptual thinking in

anatomical drawing as medicine developed reflected the way in which the

human body and its parts were drawn.40 These were never ‘photographic’

likenesses but always reflected the ‘thought style’ of the medical artist and

the importance which they gave to the different aspects of the body at that

point in historical time. Computing diagrams are ideograms too; trying to

represent the model with which the programmer is working but never

producing a photographic reality of the underlying software system.

As an example of how the visual representation becomes a powerful

computing metaphor, we can look to the idea of a ‘software life cycle’

which, depending upon the theoretical approach of the proponent using

the ideogram, can be simple or more complex. A simple representation

would be as in Fig. 2.6.

This represents diagrammatically a relatively ordered process of pro-

duction, with each part of the process clearly separated from the others

38 ‘‘‘The problem with Wikipedia is that it’s constantly changing’’, Patents Commissioner
John Doll said. ‘‘We’ve taken Wikipedia off our list of accepted sources of information.’’
An agency spokesperson said inquiries from Business Week about the use of Wikipedia
led to the policy shift.’ Reported, G. Aharonian, Internet Patent News Service,
26 August 2006.

39 See, e.g., The Peer to Patent Project: Community Peer Review of Patents at http://www.cairns.
typepad.com/peertopatent, which is supported by IBM.

40 L. Fleck, Genesis and Development of a Scientific Fact, T. J. Trenn and R. K. Merton (eds.)
(Chicago, IL, and London: University of Chicago Press, 1979).

Software as software 53

and generally of equivalent importance. This form of image was common

in early textbooks on system production and certainly reflected the early

view of the process, but quickly became the target of criticisms which

suggested that the model being illustrated did not reflect the reality of the

systems developer. Lehmann, for example, in a 1980 paper,41 proposed

that this simplistic image gave completely the wrong idea of the nature of

development of a program, suggesting that it was machine-like:

Laymen and professionals alike tend to perceive programs as ‘mechanisms’ that
are conceived, designed and then simply constructed, that is, ‘written’, to solve
some problem . . . It is generally accepted that the program as first visualised and
eventually written will not be error free, that is, it will have to undergo a debugging
process . . . but once bug-free it should be available forever to fulfil its purpose.42

At present, the diagrams used to represent the ‘software life cycle’

attempt (not always successfully) to integrate Lehmann’s critical and

now-accepted view of how software is ‘evolved’ rather than sequentially

‘developed’.

1. Define
the problem.

3. Produce a
design.

6. Maintain
program
during
lifetime.

4. Code the
design.

5. Test the
coded
program.

2. Analyse
the problem.

Fig. 2.6. The software life cycle

41 M. M. Lehman, ‘Programs, Life Cycles, and Laws of Software Evolution’, Proceedings of
the IEEE 68(9) (1980) 1060–76.

42 M. M. Lehman, and L. A. Belady, Program Evolution: Processes of Software Change
(London: Academic Press, 1985).

54 Software and Patents in Europe

In this ideogrammatic sense, a flowchart, as used in a patent application,

is not describing the actual machine code, nor the program listing, nor

how the program necessarily operates, but is describing an idealised view

of how the patent attorney (based upon the description given by the

programmer) views the operation of the program. An image of a data

structure, too, is not really describing how the information is manipulated

in the machine, but is describing an idealised view constructed by the

attorney from the description provided by the programmer. In effect, these

are abstract descriptions of the models which the programmer has tried to

implement in code. The Guidelines for examination at the EPO encourage

this strategy, by reminding the examiners that they are interested in the

‘invention’ rather than the specific implementation by program:

In the particular case of inventions in the computer field, program listings in
programming languages cannot be relied on as the sole disclosure of the inven-
tion. The description, as in other technical fields, should be written substantially
in normal language, possibly accompanied by flow diagrams or other aids to
understanding, so that the invention may be understood by those skilled in the
art who are deemed not to be programming specialists. Short excerpts from
programs written in commonly used programming languages can be accepted if
they serve to illustrate an embodiment of the invention.43

Below, we discuss further whether it is possible to be ‘skilled in the art’

and yet not be a ‘programming specialist’. What is important here is to

understand why software descriptions are so different from those of, for

example, chemical, engineering or electrical patents:

1. The underlying programmed code is usually ignored.

2. The programmer is working with virtual models which may be com-

mon (such as tables, stacks or trees discussed above) but which are in

many areas likely to have been self-constructed by the programmer, or

the programming team, or provided by other teams.

3. It is often the model from which the program is constructed which is at

the heart of the ‘inventive idea’.

4. Describing the model is usually done with diagrammatic techniques

which are further abstractions of that model.

The effect of these points is that an invention can reside to a very large

extent in diagrammatic representations of the model. This can cause

interpretational problems because it is entirely possible for exactly the

same underlying invention to be described but appear to be different

entities. We can see this when we look at the language Prolog, which

has been used in artificial intelligence programming. The model of

43 Ibid., Chapter II, Content of a European Patent Application (Other Than Claims),
section 4.14a, Computer programs.

Software as software 55

1
2

3
4

5
6

7
8

9

M
a
k
e

C
o

rd
C

o
rd

C
o

rd
R

e
o

R
e
o

R
e
o

D
u

e
s
e
n

b
e
rg

D
u

e
s
e
n

b
e
rg

D
u

e
s
e
n

b
e
rg

C
o

n
d

it
io

n
R

u
n
n
in

g
W

e
ll

R
u
n
n
in

g
p
o
o
rl
y

N
o
t
ru

n
n
in

g
R

u
n
n
in

g
W

e
ll

R
u
n
n
in

g
P

o
o
rl
y

N
o
t
ru

n
n
in

g
R

u
n
n
in

g
W

e
ll

R
u
n
n
in

g
P

o
o
rl
y

N
o
t
ru

n
n
in

g

C
o

m
m

is
s
io

n
5
%

1
0
%

1
0
%

5
%

1
0
%

1
0
%

V
a
ri
a
b
le

V
a
ri
a
b
le

V
a
ri
a
b
le

S
h

o
p

W
o

rk
N

o
t
re

q
u
ir
e
d

O
n
e

W
e
e
k

S
ix

W
e
e
k
s

N
o
t
re

q
u
ir
e
d

T
w

o
W

e
e
k
s

S
ix

W
e
e
k
s

E
s
ti
m

a
te

E
s
ti
m

a
te

E
s
ti
m

a
te

M
a
n

a
g

e
r

O
.K

.
N

o
t
re

q
u
ir
e
d

N
o
t
re

q
u
ir
e
d

N
o
t
re

q
u
ir
e
d

N
o
t
re

q
u
ir
e
d

N
o
t
re

q
u
ir
e
d

N
o
t
re

q
u
ir
e
d

R
e
q
u
ir
e
d

R
e
q
u
ir
e
d

R
e
q
u
ir
e
d

4
4

R
ed

ra
w

n
fr

o
m

M
.
M

o
n

ta
lb

a
n

o
,
D

ec
is

io
n

T
a
bl

es
,
P

a
lo

A
lt

o
,
C

A
,
1
9
7
4
,
p

.
2
4
,
S

ci
en

ce
R

es
ea

rc
h

A
ss

o
ci

a
te

s.

F
ig

.
2
.7

A
d

ec
is

io
n

ta
b
le

st
ru

ct
u

re
4
4

processing used by Prolog is non-procedural,45 rule-based and logic-

based. A rule in Prolog might take the form:

if make of car is Cord
and condition of car is running well

then
commission is 5%
and shop work is not needed
and manager is not required.

and be one of a number of rules which reflect both the data and procedure

in the program – an example of non-procedural programming where the

two are combined into one format (sometimes called ‘declarative’). This

is the basis of the rule-based expert system46 which was particularly

popular in the 1980s and 1990s47 and was heavily promoted as an

effective language for programming many task areas and as being a

novel method of programming. However, it is really only novel when

viewed as one particular representational model: the prior art by the

1970s certainly contained other programming forms which carried out

exactly the same rule-based actions but did not use the logical metaphor

that was used by Prolog. For example, program generators such as Cobol

pre-processors did effectively exactly the same thing by using a table-

format, rather than a rule-format as is shown in Fig. 2.7.

This is an example of two entire programming systems which have

conceptual equivalence, but the problem also resides at the other end of

the code continuum. For example, the GOTO and IF control structures

have consistently been viewed as problematic in programming because

they lead to badly structured programs, and badly structured programs

are difficult to debug and to maintain. A solution to these was developed

as the CASE statement – an improvement in programming technology,

but one which is essentially identical to a well-structured GOTO or IF

module of code. To a programmer, the CASE construct was a consid-

erable technical advance: ‘[The case statement] was my first program-

ming language invention, of which I am still most proud, since it appears

to bear no trace of compensating disadvantage.’48 Is it, though, an

advance to those who see only that we are using two different expressions

45 By which we mean that the definition ‘program¼ algorithmþdata’ is not fully applica-
ble. Examples of other such programs are query languages, interactive database programs
and spreadsheets.

46 See EP0782730, granted 2003 as an example of this rule-based expert system format.
47 Critically discussed in P. Leith, Formalism in AI and Computer Science (London: Ellis

Horwood/Simon and Schuster, 1990), ch. 3.
48 C. A. R. Hoare, Hints On Programming Language Design, Stanford Artificial Intelligence

Laboratory Memo AIM-224. STAN-CS-73–403 (1973).

Software as software 57

which represent the same equivalent flow of control in a program, rather

than anything more substantive?

Later – in Chapter 4 – the notion of ‘metaphor’ is looked at again with

regard to the examination process, but for now it is important to realise

that metaphors, as idealised structures or methods or abstract models,

play a very large role in computer science thinking yet are relatively

undefined in any theoretical manner. We might say that they provide an

‘idealised construct’ towards which the programmer attempts to push his

coded implementation.

Looking back at the diagram in Chapter 1 from the Nymeyer patent,

we can see just this sort of virtual model confusion in play. What is

actually being protected? Certainly not the program code nor its partic-

ular implementation. What is being protected is an idealised model

whose reality lies in the image constructed by the attorney – a mix and

match of hardware, data structure and algorithm all put together to

make a seemingly concrete entity. Only software would have allowed

the attorney the total flexibility and freedom to produce such a series of

diagrams to represent the ‘invention’. The ideogrammatic aspects of this

way of describing computing artefacts indeed goes further and allows

descriptive worlds which are part technical and part ideological. This is

particularly striking in the attempts by the artificial intelligence com-

munity to prove that their programs demonstrate ‘intelligence’. Thus,

one well-known early program (AM) was criticised for presenting a

model of mathematical discovery which – according to critics – was

only enabled to do such discoveries because these were incorporated

within the program itself.49

It is generally accepted that, in patent matters, images have always been

problematical, particularly in litigation. For example, Lord Reid in C Van

der Lely NV v. Bamfords Ltd50 pointed to the difficulties which lawyers

traditionally had with photographs, noting that while they may be experts

in the use of the English language, ‘we are not experts in the reading or

interpretation of photographs’. Lord Reid suggested:

49 G. D. Ritchie and F. K. Hanna, ‘AM: A Case Study in AI Methodology’, Artificial
Intelligence, 23(3) (1984). This is a particularly interesting case, since it is one of the
few examples in the literature where a program’s code was discussed in any detail by
anyone apart from the author of the program. The program author, Douglas Lenat,
disagreed with this assertion, believing that the program’s model of mathematical dis-
covery mirrored that of reality. AI ‘invention’ is an interesting notion; see the claim that
the EPO has the ability to examine them in Y. Skularikas, ‘Annex Regarding Experience
Made When Examining in Particular Artificial Intelligence (AI) or Neural Network
(NN) Cases’ (Munich: EPO, 1994).

50 [1963] RPC 61.

58 Software and Patents in Europe

The question is what the eye of the man with appropriate engineering skill would
see in the photograph, and that appears to me to be a matter of evidence. Where
the evidence is contradictory the judge must decide. But the judge ought not in my
opinion attempt to read or construe the photograph himself; he looks at the
photograph in determining which of the explanations given by the witnesses
appear to be the most worthy of acceptance.

If photographic representations can be seen to be confusing to a legal

reader – given that they will show an actuality – then consider that the

images which deploy notions of virtual worlds which have been created in

the minds of programmers must be even more confusing. The program-

mer will know that some of these aspects outlined in the image will relate

to structure, some to algorithm, some will reflect the way that the external

world has been structured in the analysis phase, etc., yet it is not clear how

a judge – even given the aid of expert witnesses – will be able to extricate

all this information if difficulty is found with the reading of photographs, a

visual technology which is part of the everyday world.

Textual descriptions

The language used to describe software inventions is important, since the

application must be examinable as to novelty and inventive step, and if

granted it must be accessible to readers. Thus the EPO guidelines require

‘avoidance of unnecessary technical jargon, the use of recognised terms of

art is acceptable, and will often be desirable’.51

Textual descriptions in computing, though, have a long history of

falling short of requirements. For example, we have seen that the defi-

nition of programming languages has been problematical: anyone who

has tried to program with a manual in front of them will realise that there

is much which is never explicated by the manual or is written in a manner

which leads to an incorrect assumption about what the programming

construct does. Computer scientists have thus for many years attempted

to find more formal methods of defining a programming language so that

these confusions are removed.52 One of the first attempts was with the

Vienna Development Method (VDM), an example of the operational

approach – that is, an approach which took as given that textual descrip-

tions of programs were lacking in rigour and that the best way to describe

a programming language was to provide a definition of how the memory

51 European Patent Office, Guidelines for Examination (June 2005) Part C, Chapter II, 4.14,
available online at http://www.european-patent-office.org/legal/guiex/e/index.htm.

52 See, e.g., C. Jones, Systematic Software Development using VDM (Eaglewod Cliffs,’ NJ:
Prentice Hall, 1990), available online at http://www.csr.ncl.ac.uk/vdm/ssdvdm.pdf.zip.

Software as software 59

of the computer was altered by each statement. An abstract definition of

the language thus offered a shorter and more mathematically oriented

description than text. These methods have their critics but the propo-

nents continue (in the face of evidence, perhaps) to suggest that the

techniques work. It is not simply those working in formal definitions

who suggest that text offers poor descriptive facilities for something as

complex as a computer artefact. All agree that the problem exists, but

there is little agreement over there being an available solution. It is in this

context that we must consider the written descriptions of software inven-

tions in patent applications, remembering that it is the aim of the patent

attorney to gain protection for their client, rather than to help move

computer science towards a structured notational system.

The approach of the patent attorney which emphasises persuasion of

the examiner seems to be generally found53 and perhaps to be more

possible in software-related inventions. Certainly, the many vociferous

criticisms of software inventions relate to the obviousness which many

computer scientists feel when they read a specification – particularly

those which have been coming from the US Patent Office. In Chapter 3

we look in more detail at the policy elements of patenting computer-

related inventions, but for now we should realise that the descriptive

texts in the specification – the way that the invention is described and

outlined – are very often at the heart of opposition to protection for this

new technology. For example, the open-source proponent, Richard

Stallman, has argued that the descriptive text is frequently pumped up

to a level which the underlying idea does not justify:

Programmers are well aware that many of the software patents cover laughably-
obvious ideas. Yet the patent system’s defenders often argue that these ideas are
nontrivial, obvious only by hindsight. And it is surprisingly difficult to defeat them
in debate. Why is that?

One reason is that any idea can be made to look complex when analyzed to death.
But another reason is that these trivial ideas often look quite complex as described in
the patents themselves. The patent system’s defenders can point to the complex
description and say, ‘How can anything this complex be obvious?’54

As an example of sheer complexity of description we can look at IBM’s

Commit patent – discussed in Chapter 1 – a relatively simple idea to the

computer scientist who would be viewed as the patent addressee: a person

53 See P. Leith, Harmonisation of Intellectual Property in Europe: A Case Study in Patent
Procedure, vol. 3, Perspectives on Intellectual Property (London: Sweet & Maxwell,
1998) and Chapter 3 of this text.

54 R. Stallman, ‘The Anatomy of a Trivial Patent’ (2000), available online at http://www.
linuxtoday.com/news_story.php3?ltsn=2000-05-26-004-04-OP-LF.

60 Software and Patents in Europe

skilled in the art of database system design. The patent specification is

109 pages in length and contains fifty diagrams. It is not necessary to

follow Stallman and say that the patent is obvious, but to point out that

what is essentially quite a simple idea has been certainly made to look very

much more complex simply by the length of the description, and many

readers will expend much time trying to find the inventive idea because

they have to work through so much descriptive text. A textbook which

dealt with an error-recovery operation of a similar nature and complexity

to this Commit procedure would surely not use up such a considerable

amount of space describing that operation: if so, textbooks would be

so large as to be physically impossible to use. The Board of Appeal –

considering only claims 20 and 21 – made no mention of the length of

the patent application. Why might the board have had something to say?

Because there are clearly policy reasons in having specifications which are

concise: they can be more easily searched in future; they are more ame-

nable to public use when the reader does not have to wade through page

upon page of detailed implementation which involves trademarked hard-

ware and software; and they better explicate the idea contained within the

patent in litigation when clarity is to the fore. Article 83 of the EPC

requires that the application ‘must disclose the invention in a manner

sufficiently clear and complete for it to be carried out by a person skilled

in the art’. The critic of software patents would argue that when a

specification is unduly long and obtuse, the clarity requirement of

Art. 83 is not being complied with.

The skilled man

The patent system is based upon the understanding of ‘a person skilled in

the art’ – the reasonably educated and experienced man who would be

able to read a specification and understand it, and would have ‘practical

knowledge and experience of the kind of work in which the invention was

intended to be used’.55 The person skilled in the art is generally viewed as

being without an inventive streak – he is a recipient of information and

can use it in a practical manner, but cannot create it. Thus, he is a central

pillar of the ‘obviousness’ criterion in examination –56 which we look at

later – but also if a specification cannot be used to recreate the invention

from the person skilled in the art’s reading, then revocation of the patent

is possible.

55 Lord Diplock in Catnic v. Hill and Smith [1982] RPC 183.
56 Art. 56 EPC: ‘An invention shall be considered as involving an inventive step if, having

regard to the state of the art, it is not obvious to a person skilled in the art.’

Software as software 61

In our nuclear handling experiment, who would be the ‘person skilled

in the art’? A nuclear site would have many engineers, scientists, account-

ants, managers who might all understand the use of the new programmed

materials-handling system. If a patent was to be applied for, to whom

would the document be directed and who would be the subject of the

obviousness hurdle? This depends upon how we frame our ‘invention’ if

we apply for protection. If we were to choose to present it as an invention

which is entirely software-related, though, should our patent addressee be

a programmer? If the addressee is a programmer, do we direct our

description using programmatic techniques? The guidelines suggest

that, ‘[i]n the particular case of inventions in the computer field, program

listings in programming languages cannot be relied on as the sole disclo-

sure of the invention’, which indicates that we might use our program

listing, but only as part of the application. An examiner who was able to

program in one language might not be able to read the code in our

language, but – on the other hand – it may be that the language which

we are using is particularly adept at highlighting the inventive aspect (in

fact, it may be an invention which is specifically related to an improve-

ment in that language) which would require, rather than a short program

listing giving a reasonably clear reading, a more complex mix of image

and text to put across the same idea.

‘Sufficient disclosure’ in patent specifications is important but requires

that the drafter of the document is aware of just who the addressee is. If

sufficient information is not made available and the addressee could not

implement the idea from the described invention, then revocation is

possible. In Halliburton, Pumfrey J discussed this with reference to the

potential failure of the patent being litigated to give sufficient disclosure,

and noted that:

if reference is made to the specification for a disclosure that enables the skilled
man to construct a computer program to assist in the iterative technique claimed,
or even enables him to carry it out manually, disappointment will be the result.

In many ways, Halliburton mirrors our nuclear example – a field which

requires multiple areas of expertise brought together into one single

program where the invention – if any – lies. Pumfrey noted that:

The general use of computers in modern technologies raises particular problems,
because the writing of anything other than a trivial program requires a substantial
amount of effort in writing and debugging (programming’s version of trial and
error), even though much programming requires no creative thought and a
competent programmer will be equipped with substantial experience in his area
of expertise. When such a programmer forms part of the team which is the
notional addressee of a computer-based invention, it is essential to form a view
of his capabilities.

62 Software and Patents in Europe

Pumfrey J’s claim that much programming may not require ‘creative

thought’ is perhaps to be viewed in the context of creativity at the level

of inventiveness but, to this author’s view, programming without crea-

tivity is simply not possible: one creates the world for each and every

application through the use of data structure and algorithm. However,

this is a clear statement that, where an invention resides in software, the

level of skill of the programmer is important as one basis for sufficiency

and obviousness, though the programmer may not be the only required

individual when a team is involved, a situation which will be normal in

many patentable fields. Halliburton does not really help us to allocate

programming skill amongst the members of a team, since it focused

upon the underlying mathematical model representing a drilling bit and

its cutting action and – indeed – the patentee failed at first instance

because of lack of detail in the specification.

Perhaps a more interesting example from the point of view of current

software (particularly business method) applications is that from the

Boards of Appeal. Comvik was an appeal against revocation of

EP57965557 after opposition. The patent had dealt with a reasonably

simple idea: that a mobile telephone might have two identities associated

with it rather than the usual one found in SIM cards. The Board of

Appeal, considering Art. 56 in relation to whether the idea was obvious

to the person skilled in the art, dealt with the nature of this person:

8. Finally, the identification of the skilled person may also need careful consid-
eration. The skilled person will be an expert in a technical field. If the technical
problem is concerned with a computer implementation of a business, actuarial or
accountancy system, the skilled person will be someone skilled in data processing,
and not merely a business man, actuary or accountant.

A main aim being taught by the patent was the allocation of costs with

claim 1(iii) stating: ‘the selective activation being used for distributing the

costs for service and private calls or among different users.’ The addressee

of the patent should, the board decided, more correctly have been a GSM

expert than someone involved with costings – since these allocations as

such were not the formulation of a technical problem. A GSM technical

expert would have been told of the requirement and would, the board

suggested, have found the solution in the prior art which existed and was

accessible by that technical expert. The board also pointed out that no

new way of charging costs was disclosed in the document, and that only

‘minor modifications of the network’s home database’ was required

57 ‘Method in Mobile Telephone Systems in which a Subscriber Identity Module (SIM) is
allocated at least two identities which are selectively activated by the user’, filed 1992.

Software as software 63

which neither involved technical ingenuity nor a contribution to inventive

step. We see in Comvik, therefore, that though the applicant’s addressee

may be a person with business-oriented skills, the moulding of applica-

tions to fit in with the ‘technical’ requirements of the EPO requires

something more than just programming expertise. Yet compare this

with the Menashe patent discussed in Chapter 1. It is not clear that

there is any real technical implementation or novelty in the invention –

well-tried and tested computing techniques are used to implement a

gaming system on the internet. Where, we might wonder, is the person

skilled in the art to be found here? A reader of Menashe might believe that

the skill lies in the business of gambling rather than any specific technical

skills: indeed Comvik and Menashe, though different fields, appear to have

much in common as to their substance.

In the UK Patent Office Comvik has been discussed with regard to

what might be the result if the person skilled in the art is a programmer.58

The applicant in NTT 59 had suggested that:

the person who would be concerned with solving the problems identified in this
application would be a signal processing engineer, or an expert in data processing,
and that therefore the problem that they have solved must necessarily be a
technical problem.

Which the hearing officer found unreliable as a general principle:

not least because if one develops the argument to its logical conclusion it would
suggest that all computer programs must be patentable because they are written
by technical people, i.e. people with data processing skills. Such a conclusion
cannot be right, since the Courts have consistently said that computer programs
that do not involve a technical contribution are not patentable in the UK. That
would be a pointless thing to say if all computer programs necessarily involve a
technical contribution.

We see the legal image of the nature of the programmer in these kinds of

judgments and decisions. He is frequently viewed as a dolt who is given

instructions and then implements them with little creative thought but

perhaps much sweat of the brow – a mere ‘data processing expert’ with

limited technical contributions to the problems they solve. Such an image

of the programmer is certainly acceptable if one takes the machine-based

perspective which, Chapter 1 argues, is to be found in the patent system’s

handing of software, but is not acceptable when one looks in more detail

58 Note that the quaint title (from the 1960s) actually used in this decision was ‘expert in
data processing’, a descriptor which certainly casts its own shadow over the programming
profession.

59 NTT Communications Corporation Patents Ex Parte Decision (O/195/05).

64 Software and Patents in Europe

at what the programmer actually does and the nature of their expertise.

Programming is certainly – at the professional level – as technical a task as

that of designing a machine. The hearing officer’s logic in NTT itself was

flawed (in terms of common language) through mixing up ‘technical’

with the requirements of patentability. A program is certainly technical –

all programmers are technical people – but that does not mean that all

programs should necessarily be patentable – that is, that they make a

‘technical contribution’ which is sufficiently novel and inventive to be

protected.

Can a software-related invention be understood outwith program-

ming? The answer clearly depends upon the addressee of the patent: if

it teaches a technique which is related to part of a programmed system

(say, an improvement in operating system memory management), it

would be inconceivable that it could be described without some level of

virtual model which I have suggested is at the heart of programming. This

must mean that in those circumstances the examination of the patent

requires programming expertise. On the other hand, if the software

invention is described at a different level of generality, then perhaps the

programming model of examination is not required. We discuss this in

the next section.

Where lies the invention? Levels of abstraction

Our nuclear materials-handling system – we think – is novel and inventive.

The government are keen that development costs of the nuclear programme

are kept low and suggest that we ‘exploit our intellectual rights’ wherever

possible. We hire a patent attorney and suggest to him that he protects our

‘invention’, a suggestion which raises many possible tactics and methods.

For example, an attorney might be interested in from whom we require

protection – is it other commercial UK nuclear operators? Is it overseas, thus

requiring foreign national patents? The tactics of protection are generally

specific to each invention but the attorney is looking for as broad protection

as possible, with the potential for maximising income.60 Thus, rather than

protect an inventive lock alone, the attorney would consider protection of

lock and key as separate entities since more people will buy keys than buy

locks.

60 In fact, the commercial insight of the attorney has always been less effective than wished
for. See P. Leith, Harmonisation of Intellectual Property in Europe: A Case Study in Patent
Procedure (London: Sweet and Maxwell, 1998). There are various reasons for this: e.g.
many ideas are not economically valuable and it is difficult to predict which will so be.

Software as software 65

To our computing perspective, there are a variety of novel aspects

about the system which we might propose as suitable for protection:
* the use of a computer to manipulate blocks;
* the program code for our interpreter;
* using a given data structure to represent nuclear materials;
* a clever algorithm to check speedily the validity of objects and

placement;
* the design of our formal input language;
* an interpreter which carries out error-checking on block placement;
* the use of a program to control a mechanical arm;
* storing information about past interactions for later analysis;
* storing this historic information as a new artefact – a ‘database’ (as we

decide to call it);
* the replacement of monkeys’ mental operations by machine;
* the idea of a nuclear materials handling program.

Some of these may be protectable under the patent system and some may

not and we look in the next chapter at the various reasons for protection or

denial of protection. What is important here is to see that the kinds of the

things we might call inventions are varied and wide ranging – perhaps

more than in any other technical field. This is in large part due to the way

that we can conceive programs: we view them as being different artefacts

depending upon the level of abstraction we are discussing at a particular

point in time. Thus, at the lowest level, we might want protection for the

way that we have carried out a particularly slick implementation of our

representational model. We might then look for protection at a higher

level of abstraction, in the way that (for example) we have integrated the

algorithm with the data structure. We can also at the highest level of

abstraction, try to gain protection for the idea as a whole – the replace-

ment, say, of monkeys with a system composed of a well-known machine

and a novel program.

There are dangers in allowing protections for the most abstract of

descriptions – since, at the most abstract what is potentially being pro-

tected is the problem itself rather than a solution to the problem. This

criticism has become quite pronounced in the US, where the Federal

Court of Appeals has – various commentators have suggested61 –

removed the need in software patents to have any substantive enabling

61 See, e.g., D. L. Burk and M. A. Lemley, ‘Policy Levers in Patent Law’, UC Berkeley Public
Law Research Paper No. 135; Minnesota Public Law Research Paper No. 03–11 (2003). ‘The
Federal Circuit has essentially excused software inventions from compliance with the
enablement and best mode requirements, but in a manner that raises serious questions
about how stringently it will read the nonobviousness requirements.’

66 Software and Patents in Europe

information at all. One IBM attorney62 suggested that this approach has

‘attracted the patenting of ideas which have been visualised as desirable

but have no foundation in terms of the research or development that may

be required to enable their implementation’. If this criticism is accepted,

then it seems preferable that examination is carried out by those who

understand the underlying programming methodologies and suchlike,

rather than those who simply look at the abstract description provided.

A program is complex not just because it contains many lines of code

which have been debugged, but because it contains so many different

perspectives which represent the different virtual elements of the design,

the implementation and the use of the program. This complexity gives

rise to a whole host of possible inventive ideas, some of which are certainly

novel and some of which are of questionable novelty arising more from

the descriptive novelty (that is, the virtual model) perhaps than any real,

new advance as perceived by other programmers.

Conclusion

In this chapter an attempt has been made to clarify the creative enterprise

which is at the heart of programming: usually something which does not

appear in the literature of the patent system. Programming has been very

much set in the background and trivialised compared with other more

mechanistic approaches, even though this has meant that the design of an

inflatable kayak would have been viewed by the system as more worthy of

protection than, say, a language which was so effective that it cut the

number of semantic errors in program development substantially. Given

the size of the software industry, such an invention would have huge

economic benefits – more, we might imagine, than having cheaper inflat-

able kayaks.

Yet even if we take a programmer’s perspective, our problems are not

solved. The nature of software raises a whole number of issues about what

it is that we might be protecting: we may want to protect novel software

ideas, but how do we know that they are really novel and not just another

way of saying or drawing the same idea that many other programmers

have utilised before? James Moor63 expressed these kinds of issues with

regard to the claims to developments in artificial intelligence in the 1980s,

62 J. D. Flynn, ‘Comments on the International Effort to Harmonize the Substantive
Requirements of Patent Laws’, IBM submission at http://www.uspto.gov/web/offices/
dcom/olia/harmonization/TAB42.pdf.

63 J. H. Moor, ‘Three Myths of Computer Science’, British Journal for the Philosophy of
Science, 29(3) (1978), 213–22.

Software as software 67

albeit in a wider perspective. He pointed to three ways of describing a

software artefact: theory, model and code. We have here been particularly

referring to the model and code aspects.

To the lawyer, this notion of a similar concept differing at the various

levels of abstraction may be difficult to comprehend – after all, the aim of

good and clear legal thinking is to pin down concepts so far as possible.

Programmers, however, do not take a similar view: the idea is not to fix

any concept in concrete, but to view it as malleable, since this is where

the power of programming arises.64 Sometimes programmers look at

the patent system and its desire to make concrete what should not – in

their view – be so tangible, and conclude that if that is the only way in

which the system can handle computing concepts, then it would be better

that the system didn’t handle it at all.65 The developments within the

EPO over recent years have begun to take more account of the program-

mer’s view – but there is still a substantial way to go before software is as

smoothly handled by the examination system as are the traditional fields

of technology.

64 We refer – in Chapter 5 – to Allan Newell’s assertion that the ‘models are broken’ because
of this malleability.

65 This is the argument made by T. Tamai, ‘Abstraction oriented property of software and
its relation to patentability’, in Information and Software Technology, 40 (1998), 253–7.

68 Software and Patents in Europe

3 Policy arguments

Spectacular prizes much greater than would have been necessary to call forth
the particular effort are thrown to a small minority of winners, thus propelling
much more efficaciously than a more equal and a more ‘just’ distribution
would, the activity of that large majority of businessmen who receive in return
very modest compensation or nothing or less than nothing, and yet do their
utmost because they have the big prizes before their eyes and overrate their
chances of doing equally well.1

Introduction

The debate in Europe over the proposed Directive on Computer-Related

Inventions has been heated.2 To the Commission, the proposed directive

was non-controversial, simply supporting the decisions of the Boards of

Appeal of the EPO and integrating them within a European legal frame-

work, since the EPO is an international body3 rather than one controlled

by the EC. Viewed in that light, it appeared to be a harmonising means to

resolve ‘uncertainty and divergences’ in the protection of software across

Europe, since by producing a directive, the de facto situation of patent

protection for certain kinds of software patents would be harmonised

across all member states, and such harmonisation has been the rationale

of much of the EC legislative programme. The EPO position was the

de facto position because the many important countries in terms of

software production have had courts which have accepted the role and

decisions of the Boards of Appeal and have, to a very large extent, agreed

1 J. A. Schumpeter, quoted by F. M. Scherer, ‘The Innovation Lottery’, in R. Dreyfus,
D. Zimmerman, and H. First (eds.), Expanding the Boundaries of Intellectual Property
(Oxford: Oxford University Press, 2001), pp. 3–21.

2 Proposal 2002/0047 of 20 February 2002.
3 The EPO is formally controlled by its member states via the Administrative Council, the

Council and the Office together comprising the ‘European Patent Organisation’. Art.
4(3)EPC: ‘The task of the Organisation shall be to grant European patents. This shall be
carried out by the European Patent Office supervised by the Administrative Council.’

69

with the technical contribution approach outlined in Chapter 1: that is, if

the invention looks ‘machine-like’, then it is worthy of protection.

The opposition to software patents4 did not view the directive as a

tidying-up operation, but rather saw it as the EC supporting an unlawful

misreading of Art. 52 by the Boards of Appeal and indeed going further

than the Boards of Appeal had already gone by encouraging broad pro-

tection for software as such.5 Using highly effective campaigning techni-

ques, the opponents succeeded in having the European Parliament

review and suggest amendments to the proposed directive. A number of

revisions were thus sent to the Council of Ministers, the joint approval of

which was needed to enact the law. The Council of Ministers were not

supportive of these revisions and a further directive was produced which

once again reflected the earlier thinking. This led to further debate and

argument, with the Parliament eventually voting against the directive (648

against 14). Software patent opponents suggested this was a victory – as

indeed in some ways it was – but proponents of the EPO’s approach could

also claim victory over the attempts by the Parliament to limit the Board of

Appeal’s practice of protecting computer-related inventions when they

have a sufficiently technical basis. The language used by the opponents

of software patent protection was based on the notion that small software

developers and the open source community were ‘at war’ with vested

interests to protect their rights to innovate. For example, Mueller, in

writing his history of his part in the opposition to the directive could claim:

On July 6, 2005, the world of politics turned upside down. Big money was dealt a
blow.

The European Parliament threw out legislation that the world’s largest
IT companies badly wanted. Under the pretext of protecting inventors against
plagiarists, it would have handed those giants sweeping powers over Europe’s
high-tech markets. An electronic roll-call thwarted the wicked plan in a matter of
seconds, but that decision was preceded by years of intense fighting.6

4 This is not to say that it is the only form of opposition – a variety of arguments have been
put. See, e.g., J. Ernst, ‘Software Patents Under the Magnifying Glass’ (2005) at http://
www.juergen-ernst.de/info_swpat_en.htm, who argues that the assumptions behind pat-
enting are logically inadequate and contradictory when applied to software.

5 See, e.g., M. A. Rossi, ‘Software Patents: A Closer Look At The European Commission’s
Proposal’, paper presented at 5th EPIP Conference European Policy for Intellectual
Property, Copenhagen, Denmark, 10–11 March 2005: ‘Indeed, while the Commission’s
Proposal is presented as a confirmation of the status quo, it is hard to deny that it will
have deep consequences for the design of the regime of legal protection for computer-
implemented inventions, given that its provisions can be interpreted as implying the extension
of patentable subject matter toward a situation nearly indistinguishable from an express
deletion of the ‘‘as such’’ exclusion of computer programs from patentability contained in
art. 52(2) and (3) EPC. This is most unfortunate for at least a couple of reasons.’

6 F. Meuller, No Lobbyists as Such (2006), p. 4, available at www.no-lobbyists-as-such.com.

70 Software and Patents in Europe

‘Wicked plan’ or not, it can be argued that the situation with regard to

protection has not changed: software patents are currently being pro-

tected post-6 July 2005 in exactly the same manner in which they were

being protected pre-6 July 2005. A continuing and growing stream of

applications is arriving at the EPO for protection of software inventions

and thus the potential minefield of costly infringement litigation for

smaller developers continues to grow rather than to recede.

If the arguments over the directive did not affect the specific procedure

at the EPO, it may well have caused a wider reflection throughout the

Commission: that is, on the notion which had been held as an article of

faith up to that point – that the more intellectual property protection was

introduced the better it was for the economic development of the EC.

Such pro-protection perspectives had been found in the Bangemann

Report,7 which led to the introduction of the Information Society

Programme in the 1990s. Bangemann had suggested that IP rights were

essential to the development of the new information economy in Europe,

and his thinking was followed in the introduction of, for example, data

base rights in the Database Directive.8 A more measured view on IP rights

would have suggested that giving monopolies to some would effectively

mean limitations on the economic development of others – a point which

had been made with respect to industrial protection by Jacob.9 As an

example of the belief that ‘more is better’ in the field of IPRs, the view

taken by the Commission to justify the introduction of the Database

Directive had been that protection was required in order to compete

with the US producers of information products. Yet when the industry

was analysed10 as to the effects of the directive, it was found that – if

anything – there were fewer European products in the marketplace than

prior to the introduction of the directive. It may be that we now have a

Commission which is slightly more receptive to critical voices evidenced

by the hearing on ‘Future Patent Policy in Europe’,11 which received a

particularly high response rate from SMEs and the IT industry. However,

it is important to realise there has been no Damascene transformation:

one reading of the initial findings still indicates a feeling that the patent

system is good for industry and that the ‘education’ of SMEs, rather than

7 Recommendations to the European Council: Europe and the Global Information Society,
Brussels, 26 May 1994.

8 Directive 96/9/EC of 11 March 1996 on the Legal Protection of Databases.
9 R. Jacob, ‘Industrial Property – Industry’s Enemy’, Intellectual Property Quarterly 1 (1997) 3.

10 First evaluation of Directive 96/9/EC on the legal protection of databases, Brussels,
12 December 2005.

11 Consultation and public hearing on future patent policy in Europe, DG Internal Market
and Services, ‘Hearing 12th July 2006. Preliminary findings: issues for debate’.

Policy arguments 71

a re-engineering of the protection system, will help resolve their worries

and fears.

Another effect of the debate over the software directive is certainly

that the desire of the EC to gain control over the European Patent

Office has been increased. It is commonly held – by opponents of software

protection – that the EPO is a creature of the Commission, but this is

not true, there being more than a modicum of friction between the two.12

The EC has very limited input to the operation and control of the EPO,

merely being an observer at the Administrative Council along with

WIPO13 and other organisations. The EPO and the EPC were ‘tempo-

rary’ creations intended to be subsumed within the EC’s Community

Patent project but the continuing failure to resolve the issues of trans-

lation costs and litigation forum has allowed the EPO to become a large

and powerful organisation with its own view of where it stands as an

independent agent14 in the world ordering of patent organisations – a

view which may not fit the Commission’s view of where the EPO should

stand.15

This text is not an analysis of the politics of legislating for patent

protection and assumes that, anyway, the procedural aspects of patenting

are every bit as important as the legislative. These procedural aspects

include that the Boards of Appeal have the necessary mechanism to

impose their interpretation of the EPC and their technical assessment

of what is protectable technology, through, for example, control of the

large flow of patents into the national phases. But given that parallel to the

development of protection for software there has been opposition to

patent protection and alternative models offered, it is important to inves-

tigate the policy framework which underlies protection since that has

certainly informed the procedural developments.

12 There is also friction between the EPO and its Administrative Council. In interviews
with EPO staff, the author was consistently told that no other patent office would have
its competitors on its board of management. EPO staff saw the other patent offices as
second-rate competitors, not collaborators. P. Leith, Harmonisation of Intellectual Property
in Europe: A Case Study in Patent Procedure (London: Sweet and Maxwell, 1998).

13 In fact, WIPO is specifically mentioned in Art. 30 EPC as an observer, whilst the EC is not.
14 Interviews carried out with some Appeal Board members at the OHIM – the European

Trademark Office – which is an EC institution rather than an international one demon-
strated a high level of envy of Board of Appeal independence at the EPO. See P. Leith,
‘Judicial and Administrative Roles: The Patent Appellate System in a European
Context’, Intellectual Property Quarterly 1 (2001) 50–99.

15 FFII – who take an anti software patent stance – report that leaked EC documents
suggest: ‘the Commission criticises the European Patent Office (EPO) as a ‘‘business
culture of its own’’ that considers EU interferences in patent law ‘‘as an attack on the holy
writ’’.’ The Commission also raises concerns that the EPO is ‘assuming a policy role
which does not belong to it’. See http://wiki.ffii.org/. (Dated 24 April 2006.)

72 Software and Patents in Europe

Other protections

That patent protection is required for software is posited on the suppo-

sition that there is something worth protecting which is not currently

being protected by the other forms of intellectual property law –

particularly copyright, which has recently been, via TRIPS,16 applied as

the primary worldwide mechanism of software protection.17 Looking at

our nuclear materials-handling program from Chapter 2, we should be

able to see which aspects a software innovator might want to protect but

which are not given protection under the copyright regime. Despite any

gaps it may offer, the copyright system is highly rewarding – lasting for

seventy years after the death of the longest-surviving author. In a pro-

gramming team, the youngest twenty-year-old author may live another

seventy years, which could give protection of the source and object code

of 140 years to the employer.18 Yet, given this significant long term of

protection, there are certainly weaknesses insofar as we might want to

protect our inventiveness via copyright.

The directive on the protection of computer programs which provided

a harmonised European framework of copyright protection, for example,

specifically excludes the design of our programming language from

protection:

Protection in accordance with this Directive shall apply to the expression in any
form of a computer program. Ideas and principles which underlie any element of a
computer program, including those which underlie its interfaces, are not pro-
tected by copyright under this Directive.19

Where the preamble has included programming languages (and, impor-

tantly, algorithms) as idea and/or principle:

Whereas, in accordance with this principle of copyright, to the extent that logic,
algorithms and programming languages comprise ideas and principles, those
ideas and principles are not protected under this Directive.

16 Which protects software as a literary work: ‘TRIPS Art. 10(1): Computer programs,
whether in source or object code, shall be protected as literary works under the Berne
Convention (1971).’ There is debate over whether TRIPS should impose a requirement
for patent protection for software, but countries have not amended patent laws to include
this. See, for an overview of approaches at the time of the TRIPS agreement, Strauss J,
‘Bedeutung des TRIPS für das Patentrecht’, GRUR Int (1996), 179–205.

17 Trade secret protection is also available and usually effected through control over
previous employees. Many of the early software cases appear to have involved some
accusation of theft of know-how.

18 Authorship and first ownership are usually combined rights except when the author is an
employee. For example, see s. 11 of the UK Copyright, Designs and Patents Act 1988.

19 Article 1(2), Directive of 14 May 1991 on the Legal Protection of Computer Programs
(91/250/EEC).

Policy arguments 73

Though much effort and creativity may have been applied in the design of

such a simple but powerful materials-handling programming language, if

we follow the directive the copyright system is not appropriate for pro-

tection. The functionality of programming languages does appear to be

the underlying issue here: despite the directive suggesting that a program-

ming language is an idea or principle, and since ideas are not protected

under copyright then neither should programming languages be so pro-

tected, it has been suggested that the real reason for exclusion of protec-

tion is more to do with a belief that languages are an essential tool which

should not be monopolised.20 This lacks clarity of reasoning: there are

many hundreds, indeed thousands, of programming languages and if we

take programming systems (such as the so-called ‘expert systems’, data-

base packages, etc.) which allow programming, then we have in reality a

situation where users have to be persuaded to use these, rather than a

situation where users are fighting to be allowed access to a monopolised

language. As Howard Aiken was quoted as suggesting,21 in the computer

field the problem ‘was not to keep people from stealing your ideas, but to

make them steal them’. The slow acceptance of, for example, object-

oriented technology (developed through languages such as SmallTalk) is

an example of just how much persuasion is required before the program-

ming community will move to what is now perceived as an essential and

very powerful programming technology. It may be that what is problem-

atical is when a proprietary language becomes a standard; but there are

many proprietary standards in computing and these do not appear to be

viewed as negatively as programming language design.22

Lai has discussed23 copyright protection in the UK context with respect

to the doctrine of merger in the US, noting that when the underlying idea of

20 D. Bainbridge, Introduction to Computer Law, 5th edn (Harlow: Pearson Education,
2004), p. 50, says: ‘[t]he exercise of rights in languages could seriously interfere with
the licensing and distribution of computer programs and databases. In principle, there is
a strong argument for saying that programming languages are ideas and, as such, cannot
be protected by copyright.’

21 Reported (p. 240) in I. B. Cohen, Howard Aiken: Portrait of a Computer Pioneer
(Cambridge, MA: MIT Press, 1999). Similarly, Microsoft’s position regarding piracy:
‘If they are going to get pirated, you want them to pirate your stuff, not your competitor’s
stuff. In developing countries, it is important to have a high share of the piracy software.’
B. Schneier, Secrets and Lies: Digital Security in a Networked World (Indianapolis, IN: John
Wiley, 2004), p. 253 (brought to my attention by Yu-Lin Chang).

22 Cohen has suggested that the same justifications which are used to deny protection to
algorithms, scientific principles and languages ‘apply to software platforms’. This dem-
onstrates the pragmatic difficulty in dividing elements of software into those which justify
protection and those which do not. See S. A. Cohen, ‘To Innovate or Not to Innovate,
that is the Question’ Mich. Telecomm. Tech. L. Rev. 5 (1999), 1.

23 S. Lai, The Copyright Protection of Computer Software in the United Kingdom (Oxford: Hart
Publishing, 2000). See Chapter 3 in particular.

74 Software and Patents in Europe

a given work has only a given number of possible ways of being expressed,

then there is said to be a merging of the idea and the expression. This

doctrine is applicable to standards as well, since if one wishes to conform

to a standard (such as a menu format) then one is, the reasoning goes,

following an idea rather than simply an expression. The application of this

kind of reasoning is not particularly easy, since clearly it conflicts consid-

erably with non-functional artefacts such as plays, TV screen formats and

suchlike, where one could argue that more protection is provided when

the idea and the expression are a close fit, requiring more effort on the

part of those wishing to emulate the successful artefact to put conceptual

space between their competing play or screen format. In the UK, Jacob J

in Ibcos24 rejected the merger doctrine of the US and suggested ‘the

true position is that where an idea is sufficiently general, then even if an

original work embodies it, the mere taking of that idea will not infringe.

But if the ‘‘idea’’ is detailed, then there may be infringement. It is a

question of degree.’ Clearly, the ‘idea’ behind a given programming

language is important – perhaps utilising a novel processing model such

as Lisp’s use of functional syntax and semantics, or Forth’s use of stacks –

and may not be protectable, but the actual implementation of the lan-

guage must be more than an idea. Jacob’s reasoning in Ibcos would appear

to suggest that our language is indeed protectable, since the expression of

the idea is highly detailed – and this follows the reasoning underlying the

copyright system.

Bainbridge has pointed to an unreported decision, Microsense,25 relat-

ing to a programming system based on mnemonics, where the alleged

infringer utilised forty-nine of these in a similar control system to that of

the developer, arguing that there could be no copyright in them because

of their functional necessity. Unfortunately for commentators, no deci-

sion was issued, but the judge indicated that there was an arguable case

for protection. Our program has highly limited input facilities; unsurpris-

ing, given that it utilises a teletype keyboard. However, we might suggest

that the commands we have chosen are copyrightable: such input as

‘PUT BLOCK6 ON BLOCK2’ is certainly – to someone with typing

skills – as user-friendly as ‘drag and drop’ interfaces based upon pointing

devices. Might this be protectable under the reasoning in Ibcos? If the later

Navitaire v. EasyJet judgment is good law, then it seems unlikely, since

Pumfrey J conflated the two ideas of program commands and program

24 Ibcos Computers Ltd v. Barclays Mercantile Highland Finance Ltd [1994] FSR 275.
25 Microsense Systems Ltd v. Control Systems Technology Ltd, 17 June 1991. See Bainbridge,

Introduction to Computer Law, p. 51.

Policy arguments 75

language together under the exclusion in Art. 1(2) of the Software

Directive:

In my view, the principle [of Art. 1(2)] extends to ad hoc languages of the kind with
which I am now concerned, that is, a defined user command interface. It does not
matter how the ‘language’ of the interface is defined. It may be defined formally or
it may be defined only by the code that recognises it. Either way, copyright does
not subsist in it.

While superficially this suggestion is reasonable – especially given the text

of the directive – it does lead us into other potential problems when we try

to set a boundary between commands and program. For example, it

could lead to a situation where we protect a program when it is compiled

(that is, translated into object code and then executed) but do not protect

it when it is interpreted (that is, each line is translated as a single com-

mand). Pumfrey’s interpretation of Art. 1(2) seems reasonable only

because he is including the user in the picture: when a user inputs

commands, he seems to be suggesting, it is a different situation from

when a user has pre-prepared the commands in the form of a program.

This is an echo of our discussion in Chapter 1, when the autonomous

‘machine’ view was taken of software, a view which suggests that software

when part of a machine (e.g. compiled) is different from when it is not

loaded onto the system and thus not part of the machine.

If it looks unlikely that we can rely upon copyright protection for our

language design and commands, what about the compiler/interpreter

which translates our user input into a form which checks for errors and,

if valid, issues controls to the mechanical arms? Here things appear

slightly more positive: our program is protected from literal copying of

both the source code and the object code. For the idea behind the

program, we have less protection: thus, though we are protected from

copying26 of the actual code, and also protected from much reverse

engineering,27 we have no protection should a competitor like our idea

and implement a similar system based on our program’s black box oper-

ation. This was the issue in Navitair v. Easyjet, in which Pumfrey J noted

that software differed from other copyrightable artefacts by suggesting

that ‘two completely different programs can produce an identical result:

26 Note that the source code and object code must be in some way accessed – there cannot
be copying if we have not had access to the original.

27 One of the many controversial aspects of the Software Directive was Art. 6, which allows
decompilation (that is, reverse engineering) only for the purposes of interoperability. For
a review of reverse engineering and software from the US and anti-reverse engineering
perspective, see P. Samuelson and S. Scotchmer, ‘The Law & Economics Of Reverse
Engineering’, 111 Yale L. J. 2002, 1575–663.

76 Software and Patents in Europe

not a result identical at some level of abstraction but identical at any level

of abstraction. This is so even if the author of one has no access at all to

the other but only to its results.’ The case involved two companies:

Navitaire had produced an airline reservation system and EasyJet had

been a licensee of this program. EasyJet wished for its own system –

though based on identical functionality to that of Navitaire – and used

clean room techniques (that is, purely observation of the operation of the

other system rather than its code) to produce an ‘identical’ rival system.

Pumfrey J found for EasyJet, indicating that our own novel program could

similarly be copied by our competitors using such techniques. We can

say, therefore, that the copyright system will certainly protect our effort

from plagiarism, but will not protect the implementation of a similar idea.

The reverse engineering prohibition can be seen, perhaps, as a means to

protect from direct copying, but does little to protect re-engineering of

our product unless we have some functionality hidden in the code which

is not visible through black box techniques.28

It is important to remember that we are discussing copyright protec-

tion: the author is normally central to processes of producing a copy-

rightable work which is fixated,29 yet here we seem to be in a situation

where copyright is only being awarded when the author has pre-recorded

his work in a certain format (that is, as code which will be executed at a

later date rather than input as command statements). It is as though

languages and interpreted commands are being viewed as performances,

rather than works of authorship. Of course, the analogy quickly breaks

down since performances which are recorded are protected, whilst our

languages and commands appear to receive no protection at all.

This is not a text on copyright of programs, but the point has to be made

that there are weaknesses in the theoretical models of software copyright

which are not being addressed by European courts or legislatures. There is

something of a rag-bag approach to the issue of expression, idea and

function – creating hybrid forms of protection on a case-by-case basis

with little analysis of the underlying software issues. Some have, indeed,

argued that there is a developing trend towards a conceptual hybridi-

sation of copyright and patent protection anyway, which has been

brought on by the development of software. (Such hybrid approaches

have also been proposed as positive advances by some advocates of

28 The technical term frequently used for investigation which allows internal observation of
code is ‘white box’ or ‘glass box’ technique. It is most usually used in software testing and
debugging.

29 One of the requirements for copyright is that there is a recording made. This is certainly
the case when commands are input to a machine – what happens in computer hardware is
essentially a form of continual copying from one location to another.

Policy arguments 77

alternative protection and we look at these in Chapter 6.) Burk has sug-

gested that a ‘stretching’ has occurred as the legal systems try to accom-

modate software as both expression and function. Burk’s argument

transcends our immediate interest in that he has, for example, suggested

that it is possible this hybrid conceptualisation will seep out into other areas

of law; for example, in the US interpretation of the First Amendment with

respect to program code.30 Of course, that legal concepts transcend the

field in which they develop and affect new areas in unexpected ways is not

new, being one of the main thrusts of the argument by the realists in their

criticism of formalist approaches to law.

Our program is further novel – we would argue – in that it produces a

database of materials-handling operations: the SAVEMOVES command

being the operation which writes the moves taken to off-line storage.

Might protection for the output from this facility be available via the

Database Directive?31 Clearly, the sui generis right developed by the

directive does not protect the idea of utilising a database, its aim being

to protect those elements of the contents of a database which are other-

wise not-protectable (e.g. a compilation of facts). But such protection

may be useful to us because the long-term data could be analysed in a

number of ways to help develop a better materials-handling program.

Under the reasoning in Mars v. Teknowledge,32 which gave protection to

data descriptions of coins within a program as a ‘database’, such data

would seem to be protected. However, the ECJ has more recently limited

the right in three referrals which it dealt with concurrently,33 proposing

that the development of databases which arise directly from other pro-

cessing does not give rise to a protectable database under the directive.

Thus, our database of material moves is probably not protectable and our

competitors – should they gain access – could utilise such data in the

development of their own programs.

30 D. L. Burk, ‘Patenting speech’, Texas Law Review 99 (2000), 1–55. In brief, freedom of
expression is protected under the 1st Amendment, and if software is ‘speech’ then it too
would benefit from a weakened ability of the US Government to control it – as, for
example, in attempts to prevent dissemination of cryptographic software.

31 Directive 96/9/Ec of the European Parliament and of the Council of 11 March 1996 on
the Legal Protection of Databases. Article 7(1) deals with the sui generis right: ‘Member
States shall provide for a right for the maker of a database which shows that there has been
qualitatively and/or quantitatively a substantial investment in either the obtaining, ver-
ification or presentation of the contents to prevent extraction and/or re-utilization of the
whole or of a substantial part, evaluated qualitatively and/or quantitatively, of the con-
tents of that database.’

32 Mars UK Ltd v. Teknowledge Ltd (1999) 46 IPR 248.
33 C-338/02, C-46/02 and C-444/02, 9 November 2004.

78 Software and Patents in Europe

The argument for patent protection

At its most elemental, one primary argument for patent protection is

made by simply looking at the gaps in the protection which is offered by

the copyright system to our novel and inventive nuclear block-handling

program. Clearly, the effort in coding is rewarded: that is, the design and

implementation of our functional artefact, but not the inventive input

upon which they are based. Given that software is one of the many

important industrial products, why should invention in that industry be

refused when other industrial products are protected?

Software is certainly a major industry, but one upon which it is partic-

ularly hard to put an accurate total European figure. This is due to its

nature, as packaged goods bought off the shelf, one-off products pro-

duced by external software houses, and internally produced and main-

tained software. Indeed, even defining what is ‘software’ is a problem for

analysers of economic data in their attempts to collect transnational data –

a problem of definition caused when, for example, a software product is

turned into a hardwired chip and becomes part of a more traditional

physical product (for example, part of a car engine control system or

DVD player).34 However, it is generally seen as an important industry,

and one where Europe is viewed as a large consumer – purchasing around

30 per cent of the world’s software output.

The wider background to the political view of this trade – as already

mentioned – was the Bangemann Report, which was viewed as a wake-up

call to European industry. In the 1970s and 1980s much traditional

industry had left Europe for the Far East and the worry was that there

was no new industrial enterprise filling the gap. These worries were

increased when Japan announced it was funding a Fifth Generation

Computer Systems project, a project which was intended to increase

the innovation in Japanese industry and move it beyond the cheaper

copying of European-designed goods.35 The response of European coun-

tries was to announce that they would fund projects to counter this

34 See National Research Council, Measuring and Sustaining the New Economy, Report
of a Workshop (Washington: National Academy Press, 2002). Also of interest is the
attempt to use patent documentation to discover the extent of embedded software: see
D. H. McQueen and H. Olsson, ‘Growth of Embedded Software Related Patents’,
Technovation 23 (2003), 533–44.The picture presented cannot be entirely accurate and
relates to Sweden, but the authors demonstrate quite substantial growth across several
manufacturing and communication industries for products where software and processor
are linked together as a hardware product.

35 The current threat is China: ‘Furthermore, global suppliers in the IT market have been
required to reveal the source code of their software and submit their intellectual property

Policy arguments 79

‘threat’.36 In the UK, the funding was provided under Alvey37 and gave

support to a variety of novel approaches including artificial intelligence,

formal methods and parallelism. None of these funded programmes was

particularly successful, and they did nothing to reduce the spectre of a

Europe bereft of industry, but did perhaps give rise to a realisation that

central control and development of technology was more difficult than

governments had imagined and that it might be better to leave this to

industry itself.

Bangemann thus proposed – with his committee of experts – a ‘call to

arms’, that Europe may have lost its heavy and dirty industries, but not all

was lost: the new ‘information industries’ would be the new economic

provider in Europe. This information industry would be based on content

and knowledge – Europe may have lost its steel foundries and its shipbuild-

ing, but it still had cultural industries and an educational system producing

highly educated and information-literate graduates. Importantly, the lesson

the report said had to be learned from past experience was that centralised

state control with centralised funding would not work, rather that the state

should provide the legal framework in which the new industries could grow

through individual business success. As Bangemann argued:

* it means fostering an entrepreneurial mentality to enable the emergence of new
dynamic sectors of the economy;

* it means developing a common regulatory approach to bring forth a compet-
itive, Europe-wide, market for information services;

* it does NOT mean more public money, financial assistance, subsidies, diri-
gisme or protectionism.38

to Chinese experts. Despite concerns by foreign firms, it is unlikely that the government
will abandon its objective to create a strong national electronics industry with broad
access to leading technology.’ European Competitiveness Report 2004, p. 258.

36 E. Feigenbaum and P. McCorduck, Creative Computing 10(8) (1984), 103, available
online at http://www.atarimagazines.com/creative/v10n8/103_The_fifth_generation_
Jap.php: ‘The Fifth generation: Japan’s Computer Challenge to the World’, ‘The
Japanese are planning the miracle product. It will come not from their mines, their
wells, their fields, or even their seas. It comes instead from their brains. The miracle
product is knowledge, and the Japanese are planning to package and sell it the way other
nations package and sell energy, food, or manufactured goods. They’re going to give the
world the next generation – Fifth Generation – of computers, and those machines are
going to be intelligent.’

37 F. D. Clery, ‘Alvey: The Betrayal of a Research Programme’, New Scientist, 1768 (11 May
1991): ‘This week saw the publication of the final report of the outcome of Britain’s Alvey
programme of collaborative research in information technology in the mid-1980s. The
report tells a familiar tale of first-class research languishing from lack of investment by
industry to bring products to market . . .’ My own view is that the academic community,
rather than industry was to blame for the project failures. See P. Leith, Formalism in AI and
Computer Science, (London: Ellis Horwood/Simon and Schuster, 1990), pp. 40, 91, 166.

38 Recommendations to the European Council: Europe and the Global Information Society,
Brussels, 26 May 1994.

80 Software and Patents in Europe

What could the state provide as a framework if not subsidies or protec-

tionism? For one thing, it could provide intellectual property rights, since:

‘Creativity and innovation are two of the Union’s many important assets.

Their protection must continue to be a high priority, on the basis of

balanced solutions which do not impede the operation of market forces.’

For some ten years until the late 1990s, Bangemann was one of the most

influential figures in technology and industrial thinking of the European

Commission, a time when intellectual property rights were being favour-

ably pushed by both the Commission and Parliament. Intellectual prop-

erty rights clearly fitted the Bangemann bill – they were a means of

encouraging private enterprise to innovate but kept the state at arm’s

length. This is not a novel approach: Kaufer has described how the

Venetian state, in 1474, under financial pressure due to war and other

costs but still keen to support innovation (at low cost) produced a patent

code which made provision ‘for the works and devices discovered by such

person, so that others who may see them could not build them and take

the inventor’s honor away’, so that ‘more men would apply their genius,

would discover, and would build devices of great utility to our common-

wealth’.39 Patent rights fit this approach well: the costs of development

(and the cost of patent administration) are placed upon the innovator but

the state benefits from that innovation. The state even has the opportu-

nity to receive income above expenditure from patent offices.40

Significantly – as we outline below – for the software patent debate, one

aspect of this new policy for the information society was that it tended to

encourage larger enterprises to be constructed: cross-national providers

of telecommunications etc. were viewed as being more vital than smaller,

national providers. In part the success of the US was perceived as arising

from the size of its firms and this was something that the new approach

wanted to encourage in Europe.41

This Bangemann approach of focusing on supportive frameworks

rather than subsidies continues to date. For example, in late 2005 another

39 E. Kaufer, The Economics of the Patent System (London: Harwood Academic Publishers,
1989), p. 5.

40 All national offices appear to suffer this financial loss of income to the state.
41 For example, national media ownership rules were to be reviewed: ‘In addition to own-

ership controls to prevent monopoly abuse, many countries have rules on media and
cross media ownership to preserve pluralism and freedom of expression. In practice,
these rules are a patchwork of inconsistency which tend to distort and fragment the
market. They impede companies from taking advantage of the opportunities offered by
the internal market, especially in multimedia, and could put them in jeopardy vis-à-vis
non-European competitors.’

Policy arguments 81

programme42 was being set up where intellectual property rights again are

seen to play an essential role in the ‘I2010’ initiative to make Europe ‘the

world’s leading knowledge economy in collaboration with developments of

industrial policy’.43 Such an approach is IPR-active in contrast to the pre-

1990s relatively passive approach to intellectual property rights, since it

seeks to develop IPRs in ways which will encourage and develop new

industries – including new rights – whereas previous governmental

approaches were more concerned, perhaps, about ensuring that the exist-

ing rights were effective and well managed. Is such an approach justified?

Perhaps, but it might be that once again we can see that governmental

intrusion to encourage innovation is not as easy as its proponents would

wish. Despite a growing supportive framework, Europe still continues to

drag behind the US in economic development, with a widening gap in

GDP since 1990 evidencing a potential return to pre-1970 levels (the

after-effect of the Second World War) where this had been 37 per cent in

1960 and in 2005 had fallen from 25 per cent (early 1980s) to around

30 per cent.

Bangemann’s project is at core a liberal, free-trade recipe for support-

ing and building capital and enabling the development of large transna-

tional enterprises, free from independent member state control and this

core perhaps reads – to some eyes – as the very converse of democratic

socialism. Hence, to remove this hard market-led edge, the report pro-

motes the view that social advance and social development will be

enabled through the market-led revolution. The regulation required is

not that for cultural or social purposes – only to remove factors which

might ‘impede the operation of market forces’44 and that regulation of

property rights have to be seen in a global context in order to achieve

success of the new information economies45 which are based upon novel

and inventive applications of the new information technologies.

42 Communication from the Commission to the Council, the European Parliament, the
European Economic and Social Committee and the Committee of the Regions, ‘I2010 –
A European Information Society for growth and employment’, SEC(2005) 717,
COM(2005) 229 final.

43 Enterprise and Industry Press Release, 5 October 2005.
44 It is interesting to see that the author’s students today find bizarre the very idea that there

could be only one supplier of telephone systems, or that a commercial service such as a
mobile phone would be tied to the state. This is perhaps one indication of the success of
Bangemann’s deregulation and market revolution, based of course on the Thatcher
reforms of the UK.

45 ‘The global nature of the services that will be provided through the information networks
means that the Union will have to be party to international action to protect intellectual
property. Otherwise, serious difficulties will arise if regulatory systems in different areas
of the world are operating on incompatible principles which permit circumvention or
create jurisdictional uncertainties.’

82 Software and Patents in Europe

How does this fit in with the patent system? Clearly, it requires that the

EU becomes party to supporting the internationalisation of patent rights.

It implies that patent rights become an important element of the frame-

work for these new economies. And it implies that patent rights in the new

information economies should be available to and taken up by the infor-

mation industries. This, then, was – and largely remains – the European

context and which goes far to explaining why the proposed Directive on

Computer-Implemented Inventions appeared to be a rational and rea-

sonable response to the needs of industry. The rhetoric of the patent

system has always been that it rewards innovation and forward-thinking

businesses and, to any governmental organisation concerned about

future economic prosperity, it must appear anathema to ignore the patent

system as a means of economic development: supporting invention and

wealth creation in Europe.

Such a programme also requires the active support of the EPO, a

support which the EPO has been happy to provide. For example, in the

2004 Annual Report, the President noted:

By stating in their Lisbon Declaration that they aimed to make Europe the most
competitive knowledge-based economy in the world by 2010, the European
Union’s heads of state and government turned innovation protection and tech-
nology transfer into key items on the political agenda of the coming years . . . As an
essential engine of knowledge transfer and a champion of effective innovation
protection, the European Patent Office is aware that it has a major part to play in
implementing the Lisbon Strategy. There is no other institution in which the
strands of invention, innovation and commercial exploitation merge to the same
extent, and there is no clearer proof than the doubling of annual filings between
1996 and 2004.

A question worth considering is whether this political rhetoric of support

has affected or might affect the way that intellectual property is conceived

and interpreted by the courts and other organisations such as patent

offices? A legal formalist would deny the possibility that political context

could substantially affect the legal interpretation of documents, but for

many non-formalists46 it does indeed appear possible that courts will pick

up on the dominant pro-IP policies of the politicians as much as the literal

meaning of the legislation. We can look to the US for one reported

example of this, where Landes and Posner suggest that the US Court of

Appeals for the Federal Circuit (CAFC)47 and its highly pro-patent

46 I have yet to meet a legal practitioner, who viewed their own cases through a formalist
lens, though have met those who seek an ideal formalist solution – sometimes through
logic.

47 Created to harmonise patent appeals in 1982.

Policy arguments 83

approach has avoided public controversy because it has followed the

‘general drift toward expanded protection of intellectual property’ and

that the fact that there has been no public controversy is evidence of

leaning in favour of patent validity in hearings48 despite substantial

academic and legal criticism.

Many proposals for harmonisation of the European patent system

involve some kind of central court of appeal which would follow the

role of the CAFC, perhaps based upon the European Court of Justice, a

court which has been seen to be happy to extensively develop the rights

available via trademark protection in line with the perceived needs of

rights owners.49 Would a European Patent Court or some such develop

patentee’s rights in a similarly expansive manner?

An important element, too, in the encouragement of patenting is that

it implies that European companies will – in order to use the patent

system – expend more effort upon research in order to gain patents.

A clear and direct link has been evidenced by all economic studies to

show that R&D activity and patent activity are connected.50

Unfortunately, the evidence to date is that Europe’s non-public

R&D expenditure continues to lie well below that of its main developed

competitors with Europe expending only 1.3 per cent on R&D in

2000 whilst Japan spent 2.2 per cent and the US 2 per cent.51 By encour-

aging involvement with the patent system – from all sizes and types of

industry – it can be expected that R&D expenditure would be required to

rise, which would be to the positive benefit of industry and European

economy.

Finally, the changing nature of industry within the EU, where manu-

facturing output and employment continue to fall, but employment and

output in the software industry rises, gives a situation where what is being

protected is, perhaps, no longer the prime product in terms of the

European economy.

48 See W. M. Landes and R. A. Posner, The Economic Structure of Intellectual Property Law
(Cambridge, MA: Belknap Press, Harvard University Press, 2003), p. 336. Their find-
ings are that the academic criticism is justified.

49 For example, in exhaustion matters – Case C-355/96, Silhouette International Schmied
GmbH & Co. KG v. Hartlauer Handelsgesellschaft mbH, 16 July 1998. See the discussion in
Select Committee on Trade and Industry, Eighth Report 1999 Trade Marks, Fakes And
Consumers, online at http://www.parliament.the-stationery-office.co.uk/pa/cm199899/
cmselect/cmtrdind/380/38007.htm.

50 A good review from a consistent research interest is that of F. M. Scherer, Patents:
Economics, Policy and Measurement (Cheltenham: Edward Elgar, 2005).

51 See European Competitiveness Report 2004, Commission Staff Working Document,
SEC(2004)1397.

84 Software and Patents in Europe

The policy argument against patent protection

There are several primary policy arguments against patent protection for

software (excluding the ‘unlawful’ argument regarding Art. 52). These

include:
* Patents hinder the software industry rather than invigorating it.
* Patent offices are either incapable of, or have great difficulty in, exam-

ining software patents, which leads to poor quality patents which will

hinder the European industry (both commercial and open source).
* Patents are not suitable for SMEs and other smaller producers, who

comprise a large part of the software production market, and thus will

hinder European industry (both commercial and open source).
* Software is special because it involves ‘network effects’ which can be

undermined by monopoly rights.

A further argument, not usually developed by the anti-patent lobby, but

outlined below is that much of computing inhabits areas which are ideo-

logically rather than technically motivated: in particular, those who argue

for ‘intelligence’ being a technical characteristic of computing artefacts.

The first argument – the hindering one – is disputed, but many who

support software patenting agree with the latter three of these arguments:

some of these proponents would suggest that means can be found to

improve patent office examination and limit rights to make them more

palatable to SMEs. Indeed, on the third point – relating to SME suitability –

for many of the IP litigation community in the UK, these arguments are

held to be basically true and simply a fact of life which they feel is unlikely

to be changed. In research interviews with IP litigators, for example, this

author was consistently told that ‘patents are for the big boys’,52 a state-

ment which did not mean that gaining patent protection was not possible

for smaller enterprises, but simply that, if one wished to enforce the right

through litigation, then one had better have quite substantial resources or

other means of funding.53 Patents – whatever their actual strength – have

historically been used as sticks by competitors, as Henry Ford suggested:

I believed that my engine had nothing whatsoever in common with [the Selden
Patent]. The powerful combination of manufacturers who called themselves the
‘licensed manufacturers’ . . . brought suit against us as soon as we began to be a
factor in motor production. The suit dragged on. It was intended to scare us out of
business.54

52 This actual phrase was repeated to the author several times by litigators.
53 The author found little evidence of other funding, such as insurance schemes, in practice.
54 H. Ford and S. Crowther, My Life and Work (Whitefish, MT: Kessinger Publishing,

2003), pp. 62–3.

Policy arguments 85

The fear is that this situation would continue with software patents, and

would be heightened by the very large disparity in size between the major

and minor software producers. This criticism is common: Haberman and

Hill55 have suggested that part of the problem for SMEs is that there has

been a ‘system failure’ for patent enforcement for SMEs and lone inven-

tors. London shares with the US a relatively expensive litigation system,

where costs can rise due to discovery and other procedural mechanisms,

and it is also the case that the losing party is held responsible for the costs

of the winning party.56 The Patents Court in London was certainly at the

forefront of procedural changes in the 1990s to reduce these costs and

speed up litigation; a further advance was the introduction of a new

Patents County Court for lower level cases. However, costs of defeat

still remain high and any smaller software house would surely be reticent

about undertaking to enforce rights against a large software producer in

the UK courts for sensible business reasons alone. Germany has lower

costs due to a much more restricted procedural system, so it may be that

the London perspective is simply reflecting a provincial problem.57

Hinder or invigorate?

This first policy argument listed above is important because it opposes the

ongoing rhetoric of the EC – that is, that IPRs are always good and more

IPRs are even better.58 There is certainly some evidence which has been

put forward that some disruption of the software industry is to be found:

in an early objection to software patenting, Garfinkel, Stallman and

Kapor59 used the example of the XyWrite word processing program,

which fell foul of a patent granted in 1988 to XyQuest,60 to argue that

the main effect of software patenting was to hinder innovation rather than

55 M. Haberman and R. Hill, ‘Patent Enforcement for SMEs and Lone Inventors: a system
failure’ (2003), available online at http://www.intellectual-property.gov.uk/ipac/pdf/
inventors.pdf. Both are inventors and owners of SMEs and members of the UK
Intellectual Property Advisory Committee.

56 A useful Law Society introduction designed for UK solicitors, Contentious Costs Practice
Advice Service, is available online at http://www.costs.lawsociety.org.uk.

57 The Munich patent court appears to be becoming a favourable location for patent
litigation. See the Annual Reports with figures of the BundesPatentGericht at http://
www.bpatg.de.

58 A critical approach to European developments is evidenced, for example, in P. B.
Hugenholtz, ‘Copyright and Freedom of Expression In Europe’, in R. C. Dreyfuss,
H. First and D. L. Zimmerman (eds.), Innovation Policy in an Information Age (Oxford:
Oxford University Press, 2000).

59 S. L. Garfinkel, R. M. Stallman and M. Kapor, ‘Why Patents are Bad for Software’, Issues
in Science and Technology (Fall 1991), pp. 50–5.

60 US 4,777,596.

86 Software and Patents in Europe

to invigorate it. A number of other studies have been undertaken since

this paper but – overall – there is no clear evidence pointing either way,

that such patents invigorate or hinder innovation.

An example of a result suggesting potential (rather than actual) hin-

dering is Wagner’s study of franking device manufacturers.61 Wagner

looked at a corpus of European patents which are particularly interesting,

given that they relate to business methods: the clear evidence is that few

such business method applications are refused by the EPO, though

statistically more of these granted patents are opposed than the average

patent – 16 per cent of business methods are opposed against 6 per cent of

all patents. The outcome of opposition is that 41 per cent of business

method patents are declared invalid after opposition (36 per cent for all

patents opposed). Franking device manufacturers are few in number

(five), and Wagner demonstrates that each has a different patenting

strategy, providing negative conclusions as to the value of such patenting

activity with respect to smaller concerns. He argues that looking at a

micro-patenting area such as this supports concerns about business

method patents: that Pitney Bowes:

relies heavily on business method patents in order to construct a large patent
portfolio which is used as bargaining chip in licensing negotiations. This behav-
iour induces his competitors to fight back by opposing against its patents at an
enormous frequency . . . The findings from this case study therefore support the
concerns that the granting of business method patents might lead to (inefficient)
high litigation cost.

On the other hand, Merges’s recent article62 on the effect of software

patents on developing firms investigated fifty venture-backed software

firms and attempted to ascertain objective measures as to the amount of

effort put into (and thus value placed upon) their patent portfolios. In

particular, the metrics being used by Merges were trying to determine the

quality of the patents being sought – rather than just the number, or

patents which were litigationally problematic. Thus, prior art searching

before filing was seen as a useful indication of the effort being applied.

Merges’s findings suggest that successful firms put significant effort into

their patents, from which he argues that ‘it is safe to say that the predic-

tions of the software patent doubters in the early 1990s [that small

software firms would be killed off] have been effectively refuted so far.’

61 S. Wagner, ‘Business Method Patents in Europe and their Strategic Use – Evidence from
Franking Device Manufacturers’ (2006), available online at http://epub.ub.uni-
muenchen.de/archive/00001265/.

62 R. P. Merges, Patents, Entry and Growth in the Software Industry (2006), working paper
available at online SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=926204.

Policy arguments 87

Contrary to Merges, Bessen and Maskin63 have claimed that there is a

more ‘sequential’ kind of invention found in software, where developers

rely much more than in other areas upon prior work, and that such a

sequential model is better served (and the public better served, too) by

having less protection. The authors use other empirical work – Bessen

and Hunt64 – to suggest that when patent protection was available in the

1980s and 1990s, R&D expenditure on software fell in comparison to

sales. The argument is that allowing imitation is more productive than

providing protection:

We maintain, furthermore, that there is nothing paradoxical about this outcome.
For industries like software or computers, theory suggests that imitation may
promote innovation and that strong patents (long-lived patents of broad scope)
might actually inhibit it. Society and even the innovating firms themselves could
well be served if intellectual property protection were more limited in such
industries. Moreover, these firms might genuinely welcome competition and the
prospect of being imitated.

A relatively even-handed study by Tang, Adams and Paré for the

European Commission65 in 2001 paid particular attention to the views

of SMEs but the authors appeared to find the responses dispiriting,66

suggesting – as is often the case – that education of the SMEs in the

operation and the advantages of the patent system was required. Another

European-funded project in 2002, but this time for the European

Parliament by Bakels and Hugenholtz67 on the proposed Computer-

Implemented Invention Directive, similarly did not find that SMEs

were particularly seeking more protection for software, arguing

that proponents were too ready to suggest that patents are good

for SMEs, whereas they can – ‘in fact’, the authors suggest – have

serious consequences for these smaller enterprises. In many ways, this

echoes the ‘common sense’ view reported by my interviewed UK IP

litigators who were not simply discussing software patents but all kinds

of patents.

63 J. Bessen and E. Maskin, ‘Sequential Innovation, Patents, and Imitation’, November
1999, revised March 2006, p. 2, available online at http://www.researchoninnovation.org/
online.htm#ip2.

64 J. Bessen and R. Hunt, ‘An Empirical Look at Software Patents’, Federal Reserve Bank of
Philadelphia Working Paper 03–17 (2004).

65 P. Tang, J. Adams, and D. Paré Patent Protection of Computer Programmes [sic], Final
Report, Brussels-Luxembourg (2001). Contract INNO-99–04.

66 A ‘bleak view’ as they describe it, p. 73.
67 R. Bakels and P. B. Hugenholtz, ‘The Patentability of Computer Programs: Discussion

of European-level Legislation in the Field of Patents for Software’, JUI 107 EN (2002).

88 Software and Patents in Europe

There have been some studies of the Danish ICT market, which is a

classic SME marketplace,68 with the economists Kaiser and Ronde reflect-

ing on this information and pointing to a number of negatives relating to

software patents but then suggest that patent rights ‘will stimulate innova-

tion in the software-industry world-wide. This will lead to additional

innovations from which Denmark will also benefit. We find it questionable,

however, whether this is enough to outweigh the negative effects.’69

Litigation of patents is also a factor in assessing their hindrance.

According to Allison et al., one of the key characteristics of US litigated

patents is that they tend to be owned by domestic rather than foreign

companies,70 suggesting that litigation is something which is easier

to pursue on one’s home territory. The number of litigated software-

related patents in Europe, however, is relatively small and there is little

evidence that litigation necessarily follows the US pattern; but it would be

reasonable to assume that small European software firms would, if they

decide that litigation must be undertaken, prefer to do it in Europe than in

the US.

The reader of the literature on software patents could not arrive at any

clear conclusion as to whether there is a positive resultant to SMEs from

allowing software to be protected by patent. Some evidence does suggest

that there can be advantages, but other work indicates that, for the broad

generality of small software firms, or small firm utilising software in its

products, there may be more negative than positive effect. Should we be

surprised by this? Not really, since – as we discuss below – it is inordin-

ately difficult to prove the beneficial effects of patents for any size of

commercial concern excepting those in limited fields (e.g. pharmaceut-

icals and chemistry71). If there is such a dearth of clear benefit to

68 S. E. Hougaard Jensen, U. Kaiser, N. Malchow-Møller, J. R. Skaksen, and A. Sørensen,
‘Denmark and the Information Society: Challenges for Research and Education Policy’
(Copenhagen: DJØF Publishing, 2003). See also B. Van Ark, R. Inklaar and R. H.
McGuckin, ‘Changing Gear – Productivity, ICT and Service Industries: Europe and
the United States’, paper presented at the ZEW conference, ‘Economics of Information
and New Technologies’, Mannheim, Germany, (2002) available online at http://
www.ggdc.net/pub/gd60.pdf.

69 U. Kaiser and T. Ronde, ‘A Danish View on Software-related Patents’, Centre
for Economic and Business Research Discussion Paper (2005), available online at http://
www.cebr.dk/publications%20submenu/discussion%20papers/2004/dp%202004-05.aspx.

70 J. R. Allison, M. A. Lemley, K. A. Moore, and R. D. Trunkey, ‘Valuable Patents’, Geo.
L. J. 92 (2004), 435.

71 Though even here, we see difficulties from expensive litigation. D. Bucknell in ‘The
global Lipitor patent scorecard’ (available online at http://www.duncanbucknell.com)
keeps an up-to-date listing of the Lipitor litigation between Ranbaxy and Pfizer as it
spreads around the world. For an overview of research and commercialisation of research
in chemistry see Chemical Sciences Roundtable, Assessing the Value of Research in the

Policy arguments 89

commercial firms, then we can understand why the open source com-

munity is even less welcoming to the expansion of protection for software.

Software and examination

This is a problem which follows on from the earlier chapters in this text

and is also looked at in Chapter 4, and so will be mentioned only briefly

here. A good review of one factor – citing prior art in examination – is

highlighted by Merges in his ‘As Many as Six Impossible Patents Before

Breakfast’,72 albeit examination under the US regime. Merges’s argu-

ment is that there is a problem with examination – why, he asks, is patent

quality so poor? He notes that there is a very limited number of prior art

citations in computer-based business method patents (fewer than five)

with three of these being to other US patents and also notes the disturbing

fact that only recently has patent documentation become available for

these kinds of patents, and thus: ‘Consequently, we would expect that

most of the prior art in this field would be of the non-patent variety. There

is every reason to believe that there is a vast volume of non-patent prior art

in the software-implemented business concept field, as is widely believed

to be the case with software patents in general.’73 Merges’s article is

useful because he suggests that, even if examination is problematical,

there is an opportunity to resolve this through a ‘European approach’ –

that is, by using opposition after grant, under a scheme he calls ‘efficient

private party validity-review’.

Merges’s ideas have been taken on board both in proposals for law

amendment by the legislature74 and also by various private parties who

want to improve examination, such as the Community Patent Project75 at

New York Law School.

Would such a change in strategy improve patent examination? Perhaps;

but there are also problems with examination in Europe which have not

Chemical Sciences Report of a Workshop (Washington: National Academy Press, 1999)
This text also includes an overview of IBM’s software research and development (J. M.
Jasinski, ‘Assessing the Value of Research at IBM’).

72 R. P. Merges, ‘As Many as Six Impossible Patents Before Breakfast: Property Rights for
Business Concepts and Patent System Reform’, Berkeley Tech. L. J. 14 (1996), 577–615.

73 P. 589. 74 Patent Reform Act 2005, HR2795.
75 ‘The patent system needs our help. The United States Patent Office is actively seeking

ways to bring greater expertise to bear on the review of patent applications and ensure
that only worthwhile inventions receive the patent monopoly. Currently, underpaid and
overwhelmed examiners struggle under the backlog of applications. Under pressure to
expedite review, patents for unmerited inventions are approved.’ See http://dotank.nyls.
edu/communitypatent/about.html.

90 Software and Patents in Europe

been solved by having an opposition system. While prior art is certainly

central to examination, it is not the only aspect. Of particular importance

is the fact that in software we have a virtual, malleable product which can

be described in a whole host of ways, a fact which patent attorneys can

certainly use in their attempts to gain protection for clients. Even if one

has found all relevant prior art, therefore, there may still be problems in

determining to what the applicational claims actually refer – it could

conceivably be even more difficult than assessing conflict between the

springs and rubber slits of the Epilady litigation.76

Many of the problems which have been found in the US system can

be directly tracked back to the attitude of the CAFC, which has radi-

cally altered the patenting landscape in a way which has left the US

patent office floundering, both conceptually and with regard to man-

power. The pro-patent approach of the CAFC has ignored – some

argue77 – the necessary limitations upon definitions of patentable tech-

nology and led to an examination culture which knows no limits. The

US debate about patent quality is therefore wider than simply that of

software examination and goes to the underlying function of the system

as a whole.78

The aim of this text is not the same: the author assumes that the patent

system will remain – whatever its success in achieving its suggested goals –

but that if there are particular problems with software examination then

this element should be revised and improved upon: and, as outlined in

Chapter 2, there is something about software which potentially makes

examination more difficult than in the traditional fields of technology. We

look at these issues in Chapter 4.

Suitability for SMEs

The goal of Bangemann is a Europe-wide approach to information eco-

nomic development and thus the framework is set for a larger economy

than the nation state. However, within the EU there are differences

between individual states in their IT economy which cause some of

these states to fear that disruption or at least more cost is more likely

76 J. Straus sets the context for this problem in ‘The Patent System in the European Union –
Status and Development’, Patinnova ‘97 (1997), available online at http://cordis.europa.
eu/patinnova/src/straus.htm.

77 A. B. Jaffe and J. Lerner, Innovation and its Discontents (Princeton, NJ: Princeton
University Press, 2004). See Chapter 4 in particular.

78 See, the wide-ranging analysis in S. A. Merrill, R. C. Levin, and M. B. Myers, (eds.),
A Patent System for the 21st Century: Committee on Intellectual Property Rights in the
Knowledge-Based Economy (Washington, DC: National Academies Press, 2004).

Policy arguments 91

with a software patent protection regime. For example, Kaiser and

Ronde79 put the point that, for Denmark, protection is likely to be

more negative than positive, since Denmark is a minor producer of ICT

yet a major adopter. This argument is a return to the national perspective

of IPRs (which is forever a perspective important to local industry) and

requires that members states should give up national benefits for the good

of those countries which have larger ICT economies such as the UK and

Germany. The further goal of Bangemann is the encouragement of larger

firms.80 It is this which is particularly galling to the European anti-software

patent movement, which frequently takes a more ‘small is beautiful’

approach to economic development, a philosophy expressed by

Schumacher when he argued that one’s workplace should be dignified

and meaningful first and efficient second, and that we need a more

collective attitude towards production81 – the ‘open source’ movement

can be seen as one example of this approach. Stallman, for example, in a

1995 essay talks about the psychosocial harm which affects programmers

who are unable to share their work and the technical excitement they feel

about this with others, and argues that the greatest scarcity is ‘the will-

ingness to cooperate for the public good’.82

Bangemann takes a more traditional approach to economics and the

labour market and can be read as, effectively, a message to SMEs that the

IPR philosophy of the EC is directed towards larger enterprises, and that

they should stop being SMEs and grow larger. There are some lessons

from history which perhaps support Bangemann more than the open

source movement: the history of the machine tool industry in the UK,

for example, was one of remaining small and general purpose, a strategy

which effectively failed as other countries’ firms with larger resources

moved into computer control of tooling and specialist tool manufactur-

79 Kaiser and Ronde ‘A Danish View on Software-Related Patents’.
80 See the Commission’s Report, 27 November 2006 from the TASK-FORCE on ICT

Sector Competitiveness and ICT. Membership of the taskforce appears to have been
primarily large ICT firms, urging – in the author’s reading – SMEs to stop complaining
and upgrade their business plans and understanding of the new world. Available online
at: http//:ec.europa.eu/enterprise/ict/taskforce.htm.

81 Schumacher was chief economic advisor for the National Coal Board for 20 years, but
also a student of Buddhist and Taoist thought. See E. F. Schumacher, Small Is Beautiful:
Economics As If People Mattered (New York: Harper and Row, 1973). For an example of
this approach, see N. Sawhney, ‘Cooperative Innovation in the Commons: Rethinking
Distributed Collaboration and Intellectual Property for Sustainable Design Innovation’,
PhD dissertation, MIT (2003).

82 R. Stallman, ‘Why Software Should be Free’ in D. G. Johnson and H. Nissenbaum (eds.)
Computers, Ethics and Social Values (Englewood Cliffs, NJ: Prentice Hall, 1995).

92 Software and Patents in Europe

ing.83 Such a message is politically controversial and this, therefore, has

been one that the EC has been keen to undermine: that SMEs are just as

likely to benefit from the patent system as larger enterprises, even though

the evidence is perhaps slightly more towards SMEs being hindered as

Kingston suggests, when ‘[s]ome cases were found where firms did get

some compensation from their infringers, but in far more cases the

evidence from this research was that patenting does not pay SMEs’.84

Opposing this view, there have been arguments posited which suggest

that patent rights are the only suitable method whereby small software

innovators can protect themselves from large aggressive plagiarists and,

certainly, given sufficient access to resources to litigate, the smaller innova-

tor will then be on equal terms with the larger enterprise. Insurance schemes

have been proposed as one method of levelling the litigation playing field:

As things are today, there are presumably a number of companies which con-
sciously calculate that they can avoid prosecution for patent violations. A
European patent insurance scheme would function like a burglar alarm. If the
intellectual property thieves know that they will be prosecuted for infringing
competitors’ patents, they are more likely to resist the temptation.85

A similar idea, a Patent Defence Union (PDU), has also been proposed

by Kingston as a method of protecting the SME, through effectively

forming a group which will protect each other and would also encourage

non-litigational methods of resolving difficulties. He has suggested:

It will be evident, then, that the very existence of the PDU could swing the balance
of the odds back strongly towards SMEs, by making intimidation a less effective
weapon for large firms. It would change the environment for decision-making by
managers in such a firm in terms of their career paths so as make them cautious
about infringing.86

This social engineering of management’s caution would arise, Kingston

argues, because, if their case was strong, they would agree to arbitration.

83 See R. Lloyd-Jones and M. J. Lewis, Alfred Herbert Ltd and the British Machine Tool
Industry, 1887–1983 (Aldershot: Ashgate, 2006). On the other hand, it has been possible
for some firms to remain small and successful. Peter Stubs Ltd continues (though no
longer in private hands) as a small specialist firm long after its file-making began – see
E. S. Dane, Peter Stubs and the Lancashire Hand Tool Industry (Altrincham: John
Sherratt & Son, 1973).

84 W. Kingston, Enforcing Small Firms’ Patent Rights (Dublin: University of Dublin Press,
2000), NB-NA-17-032-EN-C. Kingston’s other work is interesting too: see, e.g.,
‘Limited Incontestability for small firms’, E.I.P.R. 463 (2006), where he suggests that
the patent system is biased towards use by large firms.

85 Henrik Dahl Sørensen, Deputy Director General of the Danish Patent and Trademark
Office, Danish Ministry of Foreign Affairs, 24 October 2002.

86 Kingston Enforcing Small Firms’ Patent Rights.

Policy arguments 93

If weak, they would negotiate a licence, since infringement carries a risk of

litigation by the PDU in defence of its members. A different tack has also

been proposed suggesting that utility model protection would be a suitable

form for SMEs – requiring a lower level of invention in return for shorter

and more local protection. We look at this in Chapter 6.

Monopoly issues

There are – opponents suggest – valid reasons for the opposition to

software patenting because of the potential monopoly problems where

‘standards’ which software developers who wish to integrate with other

software or communication formats are required to use. For example, the

LZW patent87 at the core of GIF compression is an example. The algo-

rithm which carried out the compression technique was utilised in several

standards – including CompuServe GIF file format – despite the fact that

it had been patented. Some suggest it was due to having been discussed in

the June 1984 issue of IEEE Computer and there being an assumption that

it was therefore public domain knowledge. This file format gives relatively

‘lossless’ compression and is one used most frequently on web pages, being

very successful in compression and also enabling moving images. Unisys,

the owners of the patent, to the chagrin of web developers, decided in 1994

that it required royalties from commercial developers who included GIF

creation facilities in their programs. In 1999, they extended this to all – not

only commercial – programs. To the anti-software patent movement, this

was a prime example of the dangers of software patents.

This is effectively similar to a ‘submarine patent’88 – waiting under the

surface to strike only when and if the patent is worked. In software, it is

usually possible to work around such a patent – as was done with the PNG

87 US 4,558,302, ‘High speed data compression and decompression apparatus and
method’. Richard Stallman actually suggests that there were two patents covering the
same algorithm: ‘If something is purely mathematical, there are many ways of describing
it, which are a lot more different. They are not superficially similar. You have to really
understand them to see they are talking about the same thing. The patent office doesn’t
have time. The US Patent Office as of a few years ago, was spending on average 17 hours
per patent. This is not long enough to think carefully about them, so, of course they make
mistakes like that . . . That algorithm also had two patents issued for it in the US.
Apparently, it is not that unusual.’ Transcript of a talk, ‘The Danger of Software
Patents’, presented on 25 March 2002 at the University of Cambridge. Available online
at http://www.ftc.gov/os/comments/intelpropertycomments/stallmanrichard.pdf. Unisys
has a current application in the compression field (EP1453207) so has not, seemingly,
lost its desire to patent this technology.

88 Of course, formally, a submarine patent is one which has not been granted and lies –
under the US system – unpublished until grant. Publication has now made these an
endangered species.

94 Software and Patents in Europe

and MNG compression formats – but by that time JPG was in effect the

standard image format on the web. Unysis were in a strong position to

collect a revenue stream from many users of the standard – a relatively low

licence fee would bring in large sums of money, whereas a higher fee

would drive users to develop workarounds or take up the alternative

approaches. For many commercial developers, the licensing costs

appeared to be acceptable, but for the open source community, where

there is no or little income, the costs were more important.89 It has been

suggested that the open source operating system, Linux, could potentially

have accidentally implemented some 300 patented ideas – a point that

Microsoft may not have been adverse to highlighting.90 Does this matter?

Could it potentially undermine the growing use of Linux? Not according

to Linux creator Linus Torvalds, who has been reported as not being

worried by suggestions that Linux may infringe on patents:

Hey, there ‘may’ be life on Mars. What does ‘may’ mean?’’ he says via e-mail,
adding that if Linux really does infringe on a patent, he’ll just rewrite the code to
sidestep the problem.91

What is surprising, perhaps, is how few of these problems appear to exist.

We have had many years of protection for software ideas and yet the most

prominent remains LZW and most other problems for the open source

community are ‘potential’ rather than ‘actual’. This is not to say that

patent infringement cases are not being heard,92 only that the worst-case

scenarios as described by the open source community have not arrived.

The evidence is that the software community may well have learned from

LZW and that it is much more careful about utilising approaches as

standards which may be proprietary – and an effective and politicised

open source community has been keen to ensure that earlier mistakes are

not repeated.93 Standards have been potentially problematical for many

89 For a short review of firms’ strategies relating to open source standards, see S. Weber and
D. Lancashire, ‘Open Source and Standards’, Berkeley Roundtable on the International
Economy (BRIE) (2004), available online at http://programs.ssrc.org/itic/publications/
ITST_materials/weberchapter.pdf.

90 M. J. Foley, ‘Is Microsoft Rattling the Linux-Patent Sabers?’, eWeek.com (18 November
2004).

91 D. Lyons, ‘Linux Scare Tactics’, Forbes.com (February 2004). The article also refers to
the open source community ‘scaring itself’ by offering insurance against patent litigation.

92 The classic example being the BlackBerry litigation, though the patents here are, at the
time of writing, under re-examination and appear to be weaker than thought.

93 ‘W3C’s evolving patent policy has been informed by help, comments, criticism, and
occasional rants by W3C Members, many voices from the independent developer and
Open Source/Free Software communities, W3C Advisory Committee Representatives,
the W3C Team, the W3C Advisory Board, and participants in the Patent Policy Working
Group.’ See http://www.w3.org.

Policy arguments 95

technical fields and standards bodies have developed means to reduce the

potential conflict between open usage and technical standard which

processes have been reasonably well discussed in judgments. Lemley has

described the substantive law and the formal process of agreeing standards

and the requirements which members of standards organisation undergo in

order to participate.94 This process has become central to the working of

the W3C patent working group,95 for example, with a clear policy agenda

of only including proprietary technologies when it is available on a royalty-

free licensing agreement.96

Monopoly issues are certain to grow in software – for example,

the European Commission and Microsoft over access to interface

information97 – but it is not clear whether the existence of software

patents per se makes the situation very much worse. There is more of an

understanding of the potential for conflict – raised very effectively by the

open source community – that core standards at least will be available to

developers. Non-core standards – those in effect due to the ‘network

effect’, where users congregate and make a de facto standard, are more

difficult. These are rarely standards which evidence the very best tech-

nology and can be worked around, but – as IBM’s PC rival operating

system to MS Windows98 found out – a de facto standard can be very

difficult to remove. Such standards can be developed without use of

patents, of course: Gifford, in his analysis of standard setting models

has pointed to the fact that once network effects are in place, competitors

find it very difficult indeed to unseat the beneficiary of that effect,99 which

must mean that better technology – whether protected or not – is not

always successful in the marketplace.

94 M. A. Lemley, ‘Intellectual Property Rights and Standard-Setting Organizations’, Calif.
L. Rev. 90 (2002), 1889.

95 The World Wide Web Consortium is responsible for development of web standards.
96 E.g.: ‘With respect to a Recommendation developed under this policy, a W3C Royalty-

Free license shall mean a non-assignable, non-sublicensable license to make, have made,
use, sell, have sold, offer to sell, import, and distribute and dispose of implementations of
the Recommendation that: 1. shall be available to all, worldwide, whether or not they are
W3C Members; . . .’ W3C Patent Policy, 5 February 2004 (emphasis added).

97 Commission Decision of 24.03.2004 relating to a proceeding under Article 82 of the EC
Treaty (Case COMP/C-3/37.792 Microsoft) C(2004)900 final.

98 OS/2 was viewed by many as technically superior to MS Windows. However, it never
took off commercially and IBM announced end of sales in 2005 and end of support in
2006. It will remain in modified form from another vender as eComStation. IBM
considered making it open source, but some of the code is from its early collaboration
with Microsoft and thus agreement to this is not likely.

99 D. J. Gifford, ‘A Developing Model for a coherent treatment of standard-setting issues
under the patent, copyright and antitrust laws’, Idea 43(3) (2003), 331–94.

96 Software and Patents in Europe

Do ‘workarounds’ weaken software patent strength?

The strength of a patent in part comes from the inability of competitors to

‘work around’ the patent – that is, the protected technological solution to

the problem is, for example, the cheapest, the best or the only one

available. Thus, in pharmaceutical patents, we can see that the relevant

reason for strength of a patent is that the successful compound is the only

one available. In physical fields, this is rarely the case and it is usually

possible to work around the patent100 given time and effort to redesign

the product and the processes, and thus patent owners will try to develop

a protective screen around their core patents to provide protection to

competitors’ ‘workarounds’. They will also – using the PCT route

perhaps – hold off the final text of their patent and claims until they

know the direction in which the competition is moving.101 Competitors

must balance the economics between licensing or finding alternative

approaches which work around the patent, etc.

The ‘workaround’ is one of the many common maintenance proce-

dures in computing: changes to every program are needed, older coding

must be made to fit new requirements, and the role of the maintenance

programmer is primarily carrying out these ‘temporary’ improvements

which – in all likelihood – will be permanent. Fixing security holes is

another example of this kind of task. Programming is ideal for achieving

workarounds – there is no need for replacement or alteration of manu-

facturing process and the inherent malleability of software means that

alternatives can be quickly put into place. Thus, even if a very speedy

algorithm is protected, it will be possible to replace this with one which is

non-protected – it may be half the speed of the other, but processing tasks

are rarely dependent upon the speed of one operation, and so the overall

speed reduction may not damage the competing product’s value to the

consumer if it has other positive aspects (cost, user friendliness, etc.). A

protected ‘one click’ purchasing option can be replaced by a ‘two click’

option or some such.102 Linus Torvalds’s approach (mentioned above) to

perceived problems with patented technology in Linux is another example

(though this is not to suggest he is a pro-software patent proponent).

Moreover, these replacements can be done – in comparison with other

100 This does not apply when standards are involved.
101 In an earlier study, this was a relatively commonly proposed advantage by patent

attorneys. See Leith Harmonisation of Intellectual Property in Europe.
102 As Barnes and Noble did under threat of Amazon.com’s patent US 5,960,411, ‘Method

and system for placing a purchase order via a communications network’.

Policy arguments 97

technologies – in a very speedy manner and can be transmitted to users

quickly and speedily.103

It is possible that the ease and flexibility of producing workarounds

effectively undermine many of the advantages of holding software patents

at all. This depends upon what has been allowed for protection: if one

possible solution to a problem is protected, then it is likely that there are

many other alternatives; if protection has been given for the problem itself

(for, say, ‘the use of a computer to assemble documents’) then work-

arounds are clearly of much less utility to competitors. Also, if there is a

lack of clarity in the claims about just what is being protected, that, too,

affects the ability of competitors to be confident that their workarounds

do not infringe.

The aim of the patent system is both to protect and to encourage, and a

well-carried-out examination should – we suggest – be able to provide

protection and sufficient room in which to produce other solutions to the

same technical problem. This is an area where practice and policy clearly

merge.

Conclusion: the patent system as lottery?

In some arguments supporting the patent system, there is a suggestion

that the underlying aim of the system is directed towards socially worth-

while results. This is usually put in terms of a short monopoly being

unwanted but worth accepting for advancing ‘social benefit’. As worthy

an aim as this is, the examiner cannot, of course, take into account such

factors as the social value of a patent application: applications from one

person which relate to patent value assessment software (US 6,566,992)

must be examined in the same way as those which relate to magic wands

and interactive play experiences (application EP1606031). Given that it

is difficult to predict whether any given patent will have any economic

value at all, let alone social value, the role of the examiner would be

untenable if they were required to make a subjective decision on such

social value. Arguments which rely on social benefit as a justification for

the system or as a means to critique it are therefore really only usable at

103 In fact the workaround in computing is such a successful method to undermine anti-
circumvention copy protection that legislation has been seen to be required: the copy
protection routines being easily overcome by other programming methods. Of course,
one of the dangers of this methodology is that it creates ‘forks’ in system development
which results in programs which should be similar or identical in failing to interact but it
is also used as a strategy by the major software developers who deliberately accept
standards and then move the standards into an essentially proprietary format through
forking to upset the competition.

98 Software and Patents in Europe

the macro level. At the micro level of examining patents, the examiner

follows the procedure outlined in the examiners’ guidelines, yet if these

guidelines allow patent grant for inventions of little social worth, then the

larger whole (which may indeed be valuable) loses perceived value.

Having read this chapter so far, the reader will surely be in no better

position to decide whether software patents are beneficial at the macro

level or not: the evidence is simply not striking enough. The patent system

as a whole has been the target of research by economists for many years

but, much like the more recent attempts to locate either benefit or

disadvantage from software patents, it has been difficult to arrive at

clear conclusions as to the system as a whole. Economists generally are

not welcoming to patent monopolies because they view monopolies as

inherently a ‘market failure’ and suspect that they encourage ‘rent seek-

ing’ rather than competition. Yet despite this underlying critical perspec-

tive, it has certainly not been possible to prove that patents are totally

disruptive, even though, likewise it has not been possible to prove that

they are totally supportive and rational instruments of economic policy.

For example, Hoppen’s simulation models of the various software patent-

ing environmental factors which might affect the systemic value of these

protections is certainly interesting but cannot, as one suspects he would

agree, yet provide an answer. His work, however, highlights issues which

are still unresolved in our economic study of the system.104

Great rewards are sometimes available through the patent system: at

present in the US some of the awards made in patent litigation appear

spectacular and out of all proportion to the infringing act – an act which

was probably done without thought and which, given the flexibility and

malleability of software, could perhaps have been ‘worked around’ with-

out too much effort. But many of those who are granted patent protection

will not see such reward, and the majority will lose protection through

deciding not to pay renewal fees. The commonly held anecdotal view is

that one per cent of patents are profitable, 10 per cent cover their costs,

and the remainder are of no or little economic value at all.

The critics of software patents have looked at this in a rational light and

suggested that, given that the vast majority will not benefit, the system

fails – the argument being that if the majority do not ‘win’ – and may even

lose – then there is little point in having a system which it is so difficult to

prove is supportive of innovation. Are they correct? Is patent policy irra-

tional? Perhaps, but there is an intuitive argument which has been put by

F. M. Scherer, based upon the supposition made by Schumpter quoted at

104 N. Hoppen, Software Innovations and Patents: A Simulation Approach (Stuttgart:
Ibidem-Verlag, 2005).

Policy arguments 99

the beginning of this chapter. Scherer, a researcher in the field of eco-

nomics and IP for many years, has suggested that there may indeed be an

underlying principle which explains why the system works and yet

appears to be irrational. His premise is that if we accept that there is a

skewness which mirrors that found in other areas such as the sales of

records (Led Zeppelin’s sales comprising 17.6 per cent of the top forty-

eight artists, gradually tailing off as the artists are further down the list and

then dropping off the scale for the vast majority of artists), then we begin

to suspect that there is a principle which might be underlying the patent

system: that of the lottery – many enter but few win. Great rewards will go

to some, and the carrot of those rewards is sufficient to ensure that large

numbers of individuals will spend time, money and effort on attempting

to achieve these great rewards which are only available to the few. It is not

essential that everyone enters a lottery, but for those who are inspired by

winning (not, we suppose, the open source community) they can be

egged on to spend, despite the statistical fact that they are unlikely to

win – the anecdotal one per cent of patent grants simply showing a profit,

rather than the embarrassingly large profits which must be available to an

even smaller percentage.

Thus, large sums can be spent on R&D by many firms, yet only the first

to file105 will be rewarded. Without the potential to win the top prizes,

perhaps there would be much less pressure to do R&D at all – even if that

R&D is directed towards those areas which offer the biggest prizes (equiv-

alent to, in the cultural context, popular music rather than a new compo-

sition by the avant garde). If Scherer’s argument has substance, what does

this mean for intellectual property’s claim to offer ‘balance’ to all the users

of the system? A lottery, we might suggest, is hardly a balanced affair. A

lottery, though, requires clear rules to determine the winner and perhaps

that is what the examination system really is, rather than an attempt to

balance the various demands of patent breadth and scope.

Should we be disturbed by suggestions that the system is lottery-like?

Some legal theorists believe that the idea of incorporating chance within

decision-making is not as radical as we might think, and nor should it be

totally ignored as an appropriate method for dispersing goods. For example,

Duxbury106 has pointed that there is a considerable history – showing

both advantage and drawback from using such seemingly random legal

105 This is in Europe, of course. The ‘first to file’ rule is politically sensitive in the US –
attempts to change this have been unsuccessful – where smaller concerns argue that this
simply advantages those large concerns who can do R&D quickly.

106 N. Duxbury, Random Justice: On Lotteries and Legal Decision Making (Oxford: Oxford
University Press, 2002).

100 Software and Patents in Europe

decision-making – but that sometimes the most ‘cost-efficient and impar-

tial decision-making strategy may well be recourse to lot’. Aversion to this

possibility, he suggests, shows a perspective where reason and process are

more highly valued than outcome. Of course, the patent lottery system (if

that is what it is) is one where the marketplace would interact with the

legal system to produce an efficient and effective outcome, with only

minimal regulation of process.

The idea of the system having lottery aspects is intuitively appealing to

those who have investigated the workings of the patent system – the

tactical and strategic use of patents melded with the developments in

particular technologies appear to have a very large element of chance and

yet these aspects do not appear to very great extent in the law books or

patent decisions and judgments. Some may suggest that this is a nihilistic

perspective of the system, but it need not be: examination may be more

than just the setting of sweepstake rules, and may inject a sufficient

measure of rationality into a market system which would otherwise be

one of bigger dog eat smaller dog.

Policy arguments 101

4 Software patent examination

When I have a new trainee, on his first day I tell him . . . two things. The first is
you do exactly the same when writing a story – you collect the facts and you
must give them a structure, the structure of the claims. And if you are a good
author, then that is the first requirement. The technical element you can learn
from the person who comes to you – there is no need to know anything about the
topic you are working on. But then when preparing a case you have to convince
the examiner of the merits of the invention. And that is not a point of technical
ability but of psychology.1

Introduction

Whilst amongst a group of postgraduate IP students, I made a statement

which I thought was relatively non-controversial: that getting patent

protection was not too difficult. The law students, almost as one, let out

a groan of dispute which clearly suggested that they considered me

wrong. Is this a view that most lawyers hold? Perhaps more comfortable

with the substantive law of patenting rather than the technology being

discussed – noting the seeming highly technical nature of the patent

specifications and concluding that it must ‘all be very difficult’ indeed?

It is not clear why the students viewed patent examination as such a

significant hurdle to overcome. The EPO figures demonstrate the truth

of the statement: the 2005 Annual Report notes that for 128,679 Euro

and Euro-PCT applications, the number of patents granted was 53,259,

which represents an applicant with a 41 per cent chance of success, which

is hardly an indication of great applicational failure, given that this is a

monopoly which will last for twenty years.2

1 Quoted in P. Leith, Harmonisation of Intellectual Property in Europe: A Case Study in Patent
Procedure (London: Sweet and Maxwell, 1998), p. 50.

2 In the US for 2005, there were 390,733 applications and for that same year 143,806 grants
made. This is a 36.8 per cent success rate. See http://www.uspto.gov/go/taf/us_stat.htm
for fuller details of application and grant since 1963.

102

Presuming a good quality examination, there are several reasons which

might explain this success rate. It may be that many applications are being

made by researchers who are well aware of the prior art3 and what other

companies are achieving, and thus will primarily choose those ideas

which are indeed novel and inventive. Good patent attorneys will also

know how to format an idea into its many appropriate applicational forms,

and will – wherever possible – get at least some protection for the idea, if

not all that was originally hoped for. Further, many applications would be

of the small, incremental advance nature rather than fundamental advan-

ces in technology.

On the examination side, a high success rate might mean that the

examiners were doing their job well and that the applications were of

good standard. On the other hand, it might indicate that the examiner

had set a relatively low hurdle of inventive step, had poor access to prior

art, or was prepared to give the applicant some undeserved measure of

protection by reduced or amended claims. It is very difficult to decide in

absolute terms whether Europe has a ‘good’ examination or a ‘poor’

examination, simply owing to the large numbers of applications involved,

the nature of the examination process, and the diverse views of what is

‘good’.4 One approach in attempting an insight into the process is to look

to patent attorneys’ views,5 but while this is certainly an indication and

does give rise to a wide variety of views, the patent attorney is principally

targeting their client’s satisfaction6 with a particular application and

therefore, even though a general lower hurdle of inventive step may

damage a particular client in the long term, it is better for the attorney

in the short term. Another way might be to look at how many patents are

opposed after grant. The 2005 EPO Annual Report puts the figure at

2,960, which means that 5.6 per cent were opposed – a reasonably low

figure. Does this mean that, generally, those not on the receiving end of

grant were happy with the general standard? Not necessarily – opposition

is expensive7 and companies would be expected to choose which patents

they opposed and would certainly choose only those which were poten-

tially obstructive to them, and they may well choose to oppose a patent

3 The author’s earlier research suggests that many applicants do not do a search of patent
literature prior to filing, and neither do many patent attorneys. See Leith, Harmonisation of
Intellectual Property in Europe. The general view from research is that patent literature –
despite the encouragement of patent offices – is a rarely used resource.

4 Agreement is easier over whether prior art is being found, but not over levels of inventive
step.

5 Leith, Harmonisation of Intellectual Property in Europe. 6 Ibid., pp. 63–4.
7 Anecdotal evidence seems to suggest £20–£30,000 in total for a serious opposition. The

EPO fees are low, but professional fees are high and prior art searching is usually required.

Software patent examination 103

they feel is of good quality, simply in the hope that some prior art arises or

the Office will reduce the breadth of protection or amend claims, etc.

Opposition is a cheaper option than litigation and it makes commercially

better sense to oppose early than to litigate late, though it may make more

commercial sense to do neither.

Whatever the situation, it is clear that good examination is the goal

which the system should aim to achieve: it does not give unwarranted

monopolies, it reduces the overheads of successful oppositions and

greatly removes the unwanted litigation which results from over-broad

or invalid patents. Unfortunately, good examination is expensive to

achieve in all technical fields.8

One of the underlying themes of this text is that software has potential

difficulties in description and thus in examination. In Chapter 1, it was

argued that the patent system had approached this problem by restating

software inventions as machine-like inventions. In Chapter 2, it was

suggested that a software approach to examination could be taken, but

that it required a change of vision of examination: that is, seeing software

as software as such.

A number of problems arise which are particularly relevant to software

examination and which the system would have to overcome before we

could really describe examination as ‘software focused’. In this chapter,

several relatively simple examples will be used to demonstrate in practice

some of these difficulties. They arise from the fact that technology is not

brute-fact-like, and that a great deal of interpretative reasoning must

occur if we are to compare one invention with another, and see whether

the first is really prior art or the second is inventive over the first. Like legal

reasoning, technical reasoning is interpretative.

The legal academy is directed towards substantive law problems when

analysing patent cases, seeking to extract legal rationales from various

judgments on technical matters. The problem with that approach is that,

in patent matters, it is frequently the information which is omitted from

the constructed legal rationale which is actually the important element.

To put it another way, the construction of facts is the most difficult part of

the exercise and, once we have decided upon our facts, then explicating

the patent law follows reasonably easily afterwards given that the facts and

law are interconnected. Thus, discussions of obviousness and inventive

step are of legal interest, but it is not possible to provide a separate legal

8 Some believe that psychology can come to the rescue, but I personally would suggest
technical expertise – see C. Dent, ‘Decision-Making and Quality in the Patent
Examination Process: An Australian Exploration’, Intellectual Property Research
Institute of Australia, Working Paper No. 01.06 (2006).

104 Software and Patents in Europe

mechanism to decide obviousness or inventive step (and even novelty can

be difficult), since these can only be decided with reference to the internal

reasoning of a technical expert, and such is a matter dealt with under the

rubric of ‘fact finding’. This means that, often, legal writings on software

and patenting seem – to this author at least – to miss out on the more

subtle aspects.

Given that few lawyers will have a very high level of understanding of

software technology, examples are used in this chapter which are rela-

tively easy for lawyers to comprehend and yet cover some of the many

controversial areas in examination. They focus first upon three elements

which critics of software patents have seen as important:

1. The apparently wide scope of some software patent claims and the

resultant difficulty of deciding just what they protect.

2. The sometimes-poor quality of prior art searching and its effect upon

the examination process.

3. When is ‘It’s just a mental method computerised’ relevant?

The examples chosen are not necessarily favourable to a pro-patent

argument – particularly the first two, which might be viewed as

examples of faults in the patenting system rather than the ideal. But

those who see software patents as necessary or inescapable should be

expected to propose methods of overcoming faults or mitigating their

effects. The thrust of the argument which follows is that – as with any

technology – there are specific areas which are problematic to examine

and, the more novel the technological field, the more inconvenient we

must expect these areas to be. This certainly does not mean that

examination is impossible, but it does imply that there will be diver-

gences in practice between the various offices and the courts (should

there be litigation or appeal) because there is no simple method for

totally reducing human interpretation to some mechanistic, algorithmic

procedure.

Also relevant to examination are the common problems which are

found in all technologies. For example, the examiner could (by giving

too wide a scope) give protection to the problem, thereby denying others

the ability to protect alternative solutions to that problem. For example,

protection may be given to ‘control of robotic arms’ rather than simply to

one method of controlling these arms. A further problem which is found

in all technologies – but may be more difficult in software – is the

evidential matter of deciding whether the ‘invention’ actually works.

Thus, we could imagine a patent application claiming a ‘computer system

implementing reasoning’ but might dispute whether this is ‘reasoning’ in

any commonly accepted form. How might any evidence be considered in

support or refutation of this?

Software patent examination 105

Breadth: HyperCard versus Zoomracks

The first of the examples is the ‘Zoomracks’ patent (or rather the patent

which was filed by the developer of this software). In discussion of soft-

ware patents, one of the most-often-cited articles is that by Heckel,

entitled ‘Debunking the Software Patent Myths’,9 which is best charac-

terised as a defence of software patents for the smaller software inventor.

The theme of the article was that those who criticised software patents

misrepresented the reality of the situation – including those critics such as

the League for Programming Freedom who had categorised Heckel’s

patent as an ‘absurd patent’.10 Heckel was the owner of a patent (US

4,736,308) which allegedly covered the technology behind the imple-

mentation of HyperCard. This is a US patent rather than a European

one, but the point of discussing it is not related to the national procedures,

rather because it is a technology which is accessible to lawyers – basically

the idea of ‘links’ between elements on screen displayed ‘cards’ utilising a

‘card and rack’ model; and because it highlights specific problems which

can be found in what is actually being claimed in a software patent.

Heckel had worked at Xerox PARC and was author of a well-received

text on user interfaces. His program, Zoomracks, was designed for the

Atari (this was prior to the hegemony of the IBM PC clone) but ‘it was a

financial struggle largely because Atari did poorly’. Heckel notes that

Apple’s introduction of HyperCard, ‘which is based on a similar, but

more limited card and stack version of the metaphor’, created a situation

which could not be met by his own program.11

Heckel echoes the cry of the small inventor who believes that he has a

patent which is being infringed by a larger concern:

I was then faced with having invested six years of raising money, developing a
product, marketing it, and proving its value in the market, only to find I was in
debt, my customer base was on a dying computer and Apple was giving away free a
more polished and featured, although less elegant, version of the metaphor. While
Apple may not have set out to rip off Zoomracks, it was aware of Zoomracks
(having seen it under non-disclosure), of HyperCard’s similarity to Zoomracks,
and that Zoomracks was protected by patents.

9 P. Heckel, ‘Debunking the Software Patent Myths’, Communications of the ACM
(June 1992), available online at http://www-swiss.ai.mit.edu/6805/articles/int-prop/
heckel-debunking.html.

10 ‘Absurd patent’ has seemingly become the preferred terminology to describe a patent
which one feels to be invalid or obvious. It is a term which has the necessary dismissive
quality for its task – but does sometimes appear to be an accurate descriptor.

11 Presumably, he is referring to the ‘network effect’ as a program becomes a standard
around which customers and developers gather.

106 Software and Patents in Europe

In a single paragraph, then, we have a forceful advocacy for software

patents: they provide a way to protect the inventive effort of the small

developer who cannot trust larger concerns to abide by trade secret/

confidentiality agreements. Apple agreed licensing terms and, in the

words of Heckel, ‘are to be applauded for respecting my patents’.12 Of

IBM’s response, Heckel is less flattering.

HyperCard

The HyperCard program was one of the first so-called ‘killer applications’ –

programs which were so popular that they drove hardware sales; in this

case the early Apple Mac computers. The idea is relatively simple: that

information could be stored on cards which were ‘hyper-linked’ together.

Further, though, the user was enabled to program these and it was this

which really gave the program a hugely popular response. The program-

ming (‘scripting’) language used was HyperTalk, a relatively simple

language which meant that those who were non-programmers (in the

traditional ‘third generation language’ sense) could produce database and

applications programs in a number of areas.13

Apple gave the software away for free from late 1987 and seemingly had

a non-committal attitude to a program of which they did not appear to

understand the implications. However, HyperCard was an innovative

product on the marketplace, though there appears to have been an earlier

form – NoteCards –developed at Xerox PARC in 1984.14 Of course,

Xerox PARC gave the computing world much which has been forgotten –

including the InterLisp programming language used in my own com-

puting research – so it is not a surprise to see another inventive idea

which arose from that research institution.

The idea behind HyperCard is that there is a collection of cards (called

a ‘stack’). Each card can contain similar pieces of information and cards

will have a common layout (e.g. background photograph, locations for

information). Users can decide what information is contained on the

card, and can arrange links between cards – the ‘hypertext links’ – so

12 ‘People close to the industry said the settlement was a one-time payment and did not
involve future royalties. Officials of Apple, based in Cupertino, Calif., did not return
telephone calls, and Mr. Heckel declined to comment on the suit.’ New York Times, 20
December 1989.

13 It has been suggested that VisualBasic is Microsoft’s version of HyperTalk. Much of the
power of HyperTalk comes from the large number of native functions so that users had
many easy-to-use operations already programmed.

14 R. Trigg, F. Halasz and T. Moran, ‘Notecards in a nutshell’, ACM SIGCHI Bulletin
18(4) (1986), 45–52.

Software patent examination 107

that one could include a map on a card and use a part of the map as live

link and when clicked upon, bring up pictures or facts or other materials

on that area of the map. We currently find this an obvious idea: this is an

elementary internet browser, but in the pre-internet days of the 1980s,

this was radical and inventive.

A very useful visual overview of HyperCard is available, including an

interview with the ‘inventor’ via the Internet Archive,15 which demon-

strates the enthusiasm (‘fun’ appears to have been the keyword) which

was found to surround the program, in part because it allowed those with

various interests to produce ‘stacks’ (hypertext linked documents and

images) which gave a dynamic quality to their interests – for example, the

teacher of composition could produce a ‘stack’ which helped students

follow scores and which included historical and musicological informa-

tion. The significant move away from traditional programming models

was a major factor of HyperCard’s success – the user could develop stacks

interactively through adding first one button to a card, seeing how it

looked or performed, and then adding more. It was, in many ways, a

revolution in programming. The inventor of HyperCard was Bill

Atkinson, who later reported having failed to foresee the potentially

huge inventive step which HyperCard suggested:

‘I have realized over time that I missed the mark with HyperCard,’ he said from his
studio in Menlo Park, California. ‘I grew up in a box-centric culture at Apple. If
I’d grown up in a network-centric culture, like Sun, HyperCard might have been
the first Web browser. My blind spot at Apple prevented me from making
HyperCard the first Web browser.’16

A number of groups exist to continue HyperCard development, and there

appear to be continuing commercial usages: for example, it has been

reported that the lighting system in the concert hall for the Petronas

Towers (completed in 1998) in Kuala Lumpur is a HyperCard application.

From where did the original inventive metaphor arise? The model from

which HyperCard developed seems to have been one which is well known

now as ‘hypertext’ but which has been argued to have grown from an

article by Vannevar Bush in the Atlantic Monthly describing research into

a way of organising information through a machine called a Memex in

1945.17 His Memex machine was to have a large number of documents

15 See http://www.archive.org/details/hypercard_2. The recording is KCSM TV’s ‘The
computer Chronicles’, 8 January 1990.

16 http://www.wired.com/news/mac/0,2125,54370,00.html.
17 V. Bush, ‘As We May Think’, Atlantic Monthly (1945). See P. Leith and A. Hoey, The

Computerised Lawyer, 2nd edn (London: Springer-Verlag, 1998). See discussion in
Chapter 2 of hypertext and legal materials.

108 Software and Patents in Europe

(and also photographs, diagrams, etc.) and a means of arranging links

between the documents (or other elements) in the store of documents.

These links were the important element of the machine, because they

allowed the user to put a structure upon the materials in the database of

the machine. The structure to each individual user was a particular ‘trail’

through the database. When users created new trails of links, these

became the new structure. As Bush put it:

It is exactly as though the physical items had been gathered together from widely
separated sources and bound together to form a new book. It is more than this, for
any item can be joined into numerous trails.

The Memex operation can be modelled by thinking of a large library. No-

one would ever be able to comprehend all the materials in that library.

However, researchers might well be able to make links between the books

in the library and produce descriptions (‘trails’) of different subject areas.

These could then be handed on others to use to help them navigate

through the library. Memex was an idea, never an implementation – the

hardware of the time could have been forced into a system which imple-

mented it, but the newer screen-based GUI interfaces were really

required to take the metaphor and, metaphorically, ‘run with it’.

The ‘rack and card’ patent

Just as HyperCard was viewed as a novel and inventive program by its

users, so was Zoomracks, a program which is also based upon a card

metaphor:

The idea behind Zoomracks was (and still is) a good one. So good, in fact, that
others – with or without knowledge of Zoomracks – built similar card-based
schemes of their own. Frank Halasz, for instance, designed ‘NoteCards’ at
Xerox PARC in 1986. Developed on Xerox Lisp machines using the InterLisp
programming environment, NoteCards was a hypertext system based on cards,
‘fileboxes,’ and the links between them.18

It’s a new computer concept that surely must change the way databases are used. I
challenge you to find a single program that gives you a more comprehensive way to
use your [Atari] ST to keep track of your life.19

The deviser of the program, Heckel, filed his application in July 1985

(developed from an earlier abandoned application of September 1984).

The main thrust of the invention was a ‘zooming metaphor’, which

18 See a short overview of the various alternative models in J. Erickson, ‘The Real Deal’,
Dr Dobbs Journal (22 July 2001).

19 L. Ellingham, ‘Review’, New Atari User 23 (Sep/Oct 1986).

Software patent examination 109

allowed viewing of records on hardware with limited screen display size.20

The idea behind the patent was that one could – using the screen as a kind

of camera zoom lens – zoom into and out of a display of records from one

or more files. The records could be viewed in shortened form (where only

the relevant fields were displayed) or multiple records could be shown on

the same screen. The patent contained a relatively detailed flowchart of a

program which allowed this, but the techniques used in the program were

well known. The inventive idea, therefore, lay either in the metaphor or

the implementation of that metaphor, rather than any new programming.

Heckel’s patent was primarily described in terms of the underlying imple-

mentation but also included an analogy to aid understanding:

In the particular embodiment discussed below, the system can be compared to a series
of racks such as is seen adjacent to a time clock. Each rack is comparable to a file with each
rack or file associated with a division or department. Each record is comparable to an
individual time card. The elements of information on each time card such as name,
address, pay rate, etc. are comparable to the data elements or fields. Hereinafter
the terms file, record, and field will generally be used in the context set forth
above. When referring to the ‘rack/card’ analogy, reference may be made to a
column to signify a ‘rack’ or file and to row to indicate the positioning of ‘card’ or
record in the file.21

It is clear that the focus of the patent was on the implementation rather

than the metaphor.22 In the diagram (Fig. 4.1) we see this

implementational structure, where the lowest part of the diagram

shows the file or collection of files from which the information is to

be presented, the image above shows that a record has been ‘zoomed

into’, and the topmost section of the diagram shows how the user can

see either an abstracted version of the record or the detail of that record

itself. As the patent states:

This capability can be compared to a zoom lens on a camera where one gets either
a detail look or a broad view. It differs from the well known ‘window’ in that the
instant invention provides the ‘magnification’ of a zoom lens while a ‘window’
overlays a different portion of the detailed view without the ‘magnification’.

The twenty-three claims of the patent were concerned with the physical

implementation of this zooming structure, rather than claiming the

zooming metaphor itself.

20 In terms of the amount of information computers can hold, it can be argued that all
machines have a limited screen display.

21 US 4,736,308 (emphasis added).
22 ‘The matrix format [i.e. the implementation] also represents mathematically the meta-

phoric rack/card concept previously discussed.’

110 Software and Patents in Europe

The dispute

Those who have followed the Hypercard/Zoomracks descriptions so far

may be able to predict the problem in law: did Heckel’s patent, which

appeared to claim an implementation of a zooming mechanism, actually

cover an implementation of cards and links? The League for

Programming Freedom thought not and pointed out that Heckel had

not seen that his patent could cover the HyperCard model. According to

Richard Stallman:

And evidently Paul Heckel couldn’t either because when he first saw hypercard it
didn’t occur to him that it would be covered by his patent. It wasn’t similar to his

ddcc-

1
1
2
3
4
5
6
7
.
.
.
m

2
?
?
d
q r o p m h

x
i
y

d p ocod
abdd

m

b
h
n

c
i j q r

d k l
e f

3 4 5 6 7 8 . . . n

10

a
a

2 4 6 8 10 20 30 40 50 60

b
b

16

18

15

11 12 21 31 41 51 61

18

12

14

b c .

.

.

.

r

. . s

1
aa a2

3
4
5
6

8
9

10
11

7

gg g
bb b
hh h

c
ii i

d
jj j

ee e ff f

vvuuss s tt t u v ww w xx x
 yy y zz z

g g g

g g g

h h h

h h h

i i i

i i i

j j j

j j j

k k k

k k k

l l l

l l l

m m m

m m m

n n n

n n n

s s s

s s s

t t t

t t t

u u

s s s t t t u u

u

u u u

v v v

u v v v

v v v

w w w

w w w

x x x

x x x

a a a

g g g

b b b

hh h

c c

i i

c

i

d d d

j j j

o o o

o o

m m m n n n o o

o

p p p

p p p

o p p p

q q q

q q q

r r r

r r r

kk k ll l
mm m nn n oo o pp p qq q rr r

1 2 3

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

y y y z z z aaaa

aaaa

aa abab ab

aa abab ab acac ac adad

CURRENT CARD

ad

Fig. 4.1. The Zoomracks implementation

Software patent examination 111

program, it wasn’t similar to his ideas as he understood them but his lawyer told
him that the patent could be read as covering things hypercard did. So at that
point he started threatening Apple, and when Apple didn’t act scared enough then
he started threatening Apple’s users, Apple’s customers, threatening to sue them.
And Heckel and Apple made some kind of settlement which is secret, we don’t
know how much money he squeezed out of Apple this way.

Once when I gave this speech Heckel was in the audience and at this point, true
to his name, he jumped up and said: ‘That’s not true! I just didn’t understand the
scope of my protection!’23

The problem can be seen – in terms of this author’s argument – primarily

that there is no clear claiming methodology which was available to make

Heckel’s software claims read explicitly. There was an idea laid out but,

because examination was carried out under the regime of looking for the

‘machine’, it is difficult to extricate and decide upon a scope for the

various software ideas which appear in the application. Heckel had a

‘virtual’ metaphor for what his program did, but the specification did

not relate to that metaphor, rather to the implementation: the latter was

an attempt to claim a machine rather than the idea which was behind the

machine. Thus, the claims effectively allowed coverage of ideas which

were not at the core of the invention, since they were ‘tied in’ to the

originating idea.

What is meant by a ‘metaphor’ anyway? Is it an idea? Is it abstract or –

in terms of a programming design – concrete? The concept of ‘program-

ming metaphor’ is used in the research literature of computer science24

and a programmer – a person skilled in the art – would understand what is

meant, but it is a difficult concept to define.

The current position of lacking accurate software-claiming method-

ologies is due to the history of the development of software patents, i.e.

through the back door rather than reasoned discussion about how best to

formulate claiming structures for the new technology. This makes it

difficult for the reader (e.g. someone wishing to ‘work around’ the patent)

to extract from these claims just which part of the software ‘process’ is at

the heart of the patent. Thus, what was it that Heckel was really trying to

protect in his ’308 patent? Was it:

23 R. Stallman, ‘On Software Patents’, talk given in Helsinki, available online at http://
db.cs.helsinki.fi/~jhuhta/stallman.html.en.

24 This is particularly used in programming design research. For example, see D. H. H.
Ingalls, ‘The Smalltalk-76 Programming System Design and Implementation’, in
Conference Record of the Fifth Annual ACM Symposium On Principles Of Programming
Languages (Arizona: Tucson, 23–25 January, 1978) available online at http://users.ipa.
net/~dwighth/smalltalk/St76/Smalltalk76ProgrammingSystem.html. Smalltalk was a
very important early use of the ‘object-oriented’ metaphor. Once again, this was a
Xerox PARC project.

112 Software and Patents in Europe

* The metaphor of zooming back and forward into files?
* The card and rack metaphor?
* An implementational method for the card and rack metaphor?
* A specific program (algorithm, perhaps) for implementing one of the

above?
* All of the above?

The metaphors certainly appear in the specifications but only as helpful

descriptive explanations and are not contained in the claims at all. If they

had been claimed, would this have made Heckel’s patent stronger over

HyperCard? Without claiming it, was the patent readable as much

broader than originally conceived? Too broad?

Assuming that Heckel’s 1984 application was not defeated by prior art

(and there appears to be no suggestion that the Xerox PARC idea was

made public before this date) and was inventive (as surely it appears to

have been) is it an invention over HyperCard? If Heckel really did not

‘understand the scope of his protection’, was it that the protection he felt

the patent gave was for a different inventive idea? Perhaps if there had

been claim mechanisms for software which more clearly delineated what

a software inventor was laying claim to, then it might have been possible

for Heckel to have more explicitly laid out what it was that he believed was

to be protected. These kinds of questions are important when courts have

to decide how extensively a patent should be construed and what value is

placed upon the description and upon the claims – with, for example, the

US doctrine of equivalence and the related European (and common law)

notion of purposive construction. Heckel apparently felt that the claims

of the original specification did not fully explicate the invention and a

reissued patent with amended claims appears in 2000.25

Heckel did not disappear from the patent scene after the Zoomracks/

HyperCard episode. He was granted a HyperCard-related patent in

199326 and also appeared in 2003 in an attempt to sue newspapers which

he felt were infringing his reissued ‘308 patent.27 His company, previously

25 Reissue 36,653. A co-inventor was added to the re-issued patent.
26 US 5,228,123, ‘Interface and Application Development Management System Based on a

Gene Metaphor’.
27 ‘A Lee Enterprises subsidiary is fighting a California inventor who earlier this year filed

suits against newspapers he contends are violating his patents governing how Web sites
are designed. Lee unit TownNews.com, a Web hosting and design firm, is defending
itself against infringement suits Los Altos inventor Paul C. Heckel filed against two
newspapers it hosts . . . Heckel claims newspapers that display abstracts of full stories
that comprise multiple print columns violate his patents. The technique is a popular
method to tease Web site visitors to read further.’ Newspapers and Technology (May 2003).
The Editor and Publisher (17 June 2003) later stated that: ‘A Los Altos, Calif., inventor has
withdrawn a patent infringement lawsuit against a dozen small newspapers, but said

Software patent examination 113

a software developer, has appeared to move from software development to

IPR licensing.28

Prior art and persuasion: legal document drafting

The role of the patent attorney – and this is the primary role for which he

receives payment – is to get as much protection for his client as possible

and, as mentioned in the quotation at the start of this chapter, this

involves an interaction between representative and examiner on what

the technology is and how this relates to the matter in the current appli-

cation’s claims. This is mediated in a context which is set by the search

report and, therefore, the prior art which is discovered in search is vital to

ensure good examination. Without good prior art the whole process of

examination becomes liable to the examiner making decisions on poor

technical grounds, and the good patent attorney will always be looking for

weaknesses in examination which can be turned to the benefit of the

client. In an earlier study – prior to the relaxing of the examination of

computer-implemented inventions – it was reported by one patent attor-

ney with a German computer firm that it was sometimes possible (partic-

ularly when examiners were outwith the main computer technical field)

to confuse them:

If you are talking to examiners who specialise in the field of GO6F . . . the patent
examiners there are very much aware of the current case law from the EPO Boards
of Appeal and it is very difficult to pull wool over their eyes. With newer ones, or
less cynical ones you can. I mean, older examiners also tend to be much more
restrictive than younger examiners. With older examiners you certainly can’t pull
the wool over their eyes, sometimes with the younger ones you can. When you are
talking about examiners who specialise in other technical fields, in which com-
puters are increasingly being used they are certainly not as aware of the case law of
the EPO Boards of Appeal. In many cases, as a patent attorney, you are obliged to
cite the relevant case law at them because their first attitude is to look in the
negative catalogue of Article 54 and to say, computer programs are not patent-
able, I’m going to reject your invention. I then come back with [a list of cases] . . .
Then they often turn completely to the other direction and can have the wool
pulled over their eyes without really thinking is there a technical problem behind
this, is the attorney just clothing the claim in useless hardware features in order to
disguise the software invention (the non-patentable software invention behind it).
Those examiners are much more susceptible to manipulation.29

newspapers haven’t heard the last of him. Paul C. Heckel said he plans to refile claims
against papers that allegedly violate his inventions once his company, Quickview
Systems, which owns the patent, returns to good standing.’

28 ‘Quickview Systems – A Technology Licensing Corporation’ – see at http://
www.quickviewsystems.com.

29 Leith, Harmonisation of Intellectual Property in Europe, p. 82.

114 Software and Patents in Europe

Since this interview took place, a considerable amount has happened with

respect to examination of software and we would expect that the basic

problems of understanding the case law would, for many examiners, now

have gone. However, this attorney’s point was also that there was a

problem when examiners were carrying out an examination which was

outside their specialist areas. Clearly, some applications will arrive at the

EPO which are in fields which are rarely encountered, or which transcend

the borders of several fields and will cause possible examination head-

aches for the individual who has to search and also the individual who has

to examine.30 The example here of legal document assembly appears to

be one such technical field.

Method and system for creating documents

The example relates to a technology which lawyers should also under-

stand and raises different issues from those raised by the Heckel patent,

primarily issues of searching through prior art during examination. This

example is European patent (EP0988609), which was filed by Ian

Woodcock in June 1998 and granted in September 2002, entitled

‘Method of and system for creating documents’. The field of the inven-

tion was the preparation of documents by computer were related to a

method (claim 1) and a system (claim 2).

Lawyers will know well that document creation is time consuming, and

that ways to speed this process up – particularly for documents which are

relatively ‘standard’ – can be cost effective in the modern legal practice.

Woodcock suggested that his invention could be applied to documents

such as wills, powers of attorney, self-assessment tax, contracts of

employment, employee records, etc., indicating that the method has

potentially wide-ranging applications. Producing documents by com-

puter was well known: the word processor had, by the 1980s, already

transformed legal practice by removing the need to type out and carefully

check multiple copies of documents. What Woodcock claimed for his

invention was the automation by means of interactive questions, so that a

list of questions would be produced which depended upon the answer to

the prior questions. The final document could be constructed from pre-

prepared clauses, these being chosen to reflect the answers (much like

picking these from the traditional text containing legal precedents). The

patent contains several flowcharts and programming information

30 Examination is by a team, but in practice to be left to one member of the team to be
primarily responsible for each application – Art. 18(2) EPC. Supervision of examiners is
also present.

Software patent examination 115

detailing generally well-known techniques for carrying out this kind of

processing.

The original search report completed for the patent application31 noted

that there were two relevant priority documents which were classified as

category ‘X’ for all the relevant claims – that is, that the documents were

‘of particular relevance; the claimed invention cannot be considered

novel or cannot be considered to involve an inventive step when the

document is taken alone’. These were US 5,272,623, entitled ‘Software

programming method for forming Government contracting documents’

(granted December 1993) and EP376695, entitled ‘Operator-defined

dialog boxes and processing logic for computer systems’ (the latter was

an application later deemed withdrawn). Neither of these two documents

were in the field of legal document assembly but both involved the

construction of questionnaires.

A search report which produced such negative results indicating that all

of the claimed aspects of the invention were to be found in the prior art

would be decisive in refusing grant, so the examiner was obliged to request

‘observations’ from the patentee within four months.32 Woodcock’s rep-

resentative filed these observations and an amended version of the patent,

reducing this to two claims which acknowledged the known features to be

found in the two cited pieces of prior art. Example screen shots were also

forwarded but these do not appear in the on-line filing system due to poor

quality. The arguments made were that:

1. The new claims had been amended by the use of the term ‘interpre-

tative’ to quality the expression ‘logical argument and branches’ (i.e.

that artificial intelligence techniques were being used) and the term

‘continuous’ to qualify the questionnaire.

2. The difference between US 5,272,623 and the current application was

that that prior art patent differed since with word processing macros

there is no real provision for moving backwards, since this requires a

user to remember and retrace all the questions and answers, so, in

practice, the data has to be re-entered.

The examiner replied that the proposed amendments introduced new

subject matter since ‘the artificial intelligence activities of the questions

database described . . . do not suffice to rend the definition of ‘‘the inter-

pretative logical argument and branches’’ as introduced in the claims,

whose wording appear also vague and unclear’. The applicant’s repre-

sentatives replied (in August 2001), outlining that ‘logical argument’ as a

term was ‘well understood’, that this was fully supported in the original

31 October 1998. 32 EPC 96(2) and Rule 51(2).

116 Software and Patents in Europe

text and that there were other distinct differences between the prior art

cited and this application.

We see here the persuasive nature of the patent attorney. Given a very

poor start with a near-damning search report, the attorney was still able to

produce a revised application and arguments as to why this revision was

worthy of patent protection. The persuasion was sucessful and the exam-

iner noted in November 2001 that he intended to grant a patent on the

basis of the revised documentation. The attorney had not achieved all

that was requested at the beginning of the application process, but no

doubt the client was pleased that, out of very little, a successful patent had

been constructed.

Was it novel and inventive?

This author assumes that this was not a novel idea and also lacked inventive

step – a view taken as someone who might be described as a person ‘skilled

in the art’.33 This may well be incorrect and while there may indeed be a

patentable invention at the core of this specification, there are certainly

reasons to consider that there were problems with the examination. For

example, the search report covered only patent documentation and did not

reflect the research and commercial developments which had taken place

in the 1970s to 1990s in the field of legal document assembly. Given this

limited search report and a non-critical examiner who appeared to be easily

swayed by pseudo-technical arguments, we might suggest there was wool

and there were eyes involved in the examination process.

The field of legal document assembly was well known by 1998. Indeed,

some of the original developments in the field were carried out by Jim

Sprowl (ironically a well-known expert in patent and computer law34),

who carried out work for the American Bar Association in the 1970s. His

article ‘The Automated Assembly of Legal Documents’35 clearly

describes the processing language ABF, a system which is based upon

just the ‘logical’ processing outlined in Woodcock’s patent. Of this system

Sprowl wrote:

33 See Leith and Hoey, The Computerised Lawyer. For a number of years in the 1990s and
early 2000s, students on the author’s LLM in Computer and Law were set assessed
programming tasks to do just this kind of document assembly using a variety of program-
ming tools – SQL, PHP, HMTL, etc.

34 See e.g. P. Maggs, J. T. Soma and J. A. Sprowl, Computer Law: Cases, Comments,
Questions (Minnesota: West Publishing, 1992).

35 In B., Niblett, (ed.), Computer Science and Law: An Advanced Course (Cambridge:
Cambridge University Press, 1980). The full report was published in American Bar
Foundation Research Journal 1 (1978).

Software patent examination 117

We undertook a second project to design a computational processor that could
write its own program using form documents, statutes, and regulations as a guide.
No such processor had ever before been constructed, to our knowledge, and at the
outset of the investigation it was not at all clear which form such a processor would
take if it even proved possible to construct one.

Sprowl’s program was able to hold input information and insert it into

locations in the document as required (i.e. the input information was held

in a short-term ‘database’) and using a logical structure to request only

information from the user which was required (i.e. a dynamic listing of

questions) through ‘optional and alternative passages’:

Such optional and alternative passages may also contain additional optional and
alternative passages, which, in turn, may themselves contain additional optional
and alternative passages and so on without limitation.

Of course, the program had no GUI interface, given that it was written in

the 1970s and ran on a CDC mainframe, so the implementation

described by Woodcock where the continuous formatted screen display

is an important factor of the invention could not have been implemented

in that hardware. Nonetheless, a continuous display of only relevant

questions would be presented on the terminal in front of the user. Since

Sprowl’s early work, a whole host of commercial systems had been

produced and were running and being sold by 1998, which basically

operated with the same underlying technology as ABF. Lauritsen, who

had been involved with one of the early research projects between

Harvard and Brigham Young Universities, and Soundakoff outlined a

number of these in an article in 1998.36 Further, in the 1980s a number of

projects had been undertaken in the field of ‘expert systems’ which

carried out this task of questioning the user and, based upon the replies

given, choosing various paths for other questions. Woodcock notes this,

but gives no indication of where his invention differs from this non-cited

prior art, indeed seeming to use the fact that the few pieces of prior art

cited in the search report are proof of his overall novelty.37

36 M. Lauritsen and A. Soudakoff, ‘Power Tools for Document Preparation’ (1998), at
http://www.capstonepractice.com/amlaw6.pdf. A version of this had earlier appeared in
AmLaw Tech, The American Lawyer’s Technology Magazine.

37 An article by Jim Sprowl had been cited as background material (i.e. ‘A’) in the search
report for EP0376695 which was cited in the search report for Woodcock’s patent but was
not mentioned by the examiner. The file documentation for EP0376695 has been
destroyed in line with the workflow practices under Rule 95a which requires files relating
to refused, withdrawn or revoked applications to be destroyed after five years. Such
destruction does not appear to be necessary – Rule 95a(3) states that electronic versions
will be considered to be originals – given that digital files effectively require minimal cost to
store and may be of use to researchers (both academic and patent searchers) in future years.

118 Software and Patents in Europe

There was no backward movement through the questions in ABF, a

point claimed by Woodcock’s attorney as inventive over the prior art in

the letter of January 2001, but the patent in any event lays no claim nor

describes a mechanism for moving backwards and changing values input

when, for example, a user inputs information in error and wishes to

change that input. In some ways, this latter element might be seen to be

inventive but it also, to a programmer, does appear to be a relatively trivial

problem. It is a standard programming problem rather than one requiring

great inventive leaps once one has a mechanism for storing and inserting

data into locations as required (as had ABF), and indeed many of the

commercial systems outlined by Lauritsen were linked to databases of

various sorts. Any programmer who was given a specification for an

interface which required ‘back stepping’ could implement it in a number

of ways – storing input on a tree structure and pruning branches as

required would be one simple means. If Woodstock had actually claimed

‘back stepping’ as a method in his patent, would he have effectively

monopolised all possible programming solutions or only the method by

which he demonstrated implementation?

Of course, when we move away from the specific technical field of legal

document assembly, the prior art is full of such back-stepping pro-

cedures. The most well known of all must be the ‘undo’ and ‘redo’ facility

in Microsoft Word.38

What – if anything – went wrong?

Once again, presuming that this patent was incorrectly granted – probably

an assumption with which the patentee would disagree – what might have

been the problem? The search examiner produced clear evidence that

there was prior art within the patent literature which was felt to cover the

application. The only materials cited in the search report were patents –

there was no use of journal or other written materials, and no mention of

any of the commercial programs which were on offer. It is as though a

whole body of prior art was missing. Did the search examiner simply

believe that he had found enough to deny grant and that there was little

38 This was pointed out to the author by a respondent on the Law-AI mailing list, proving
that the many obvious exemplars are often overlooked. See also the application filed
December 2004, EP1491997: Undo infrastructure, ‘Methods, systems, and computer
program products that automatically generate and track undo information so that the
developer of a user interface object need not be responsible for generating and tracking
undo information. Change notifications for changes to an object within a visual user
interface designer are processed . . .’

Software patent examination 119

need to do any further time-consuming research into databases or mate-

rials to which he did not have easy access?39

It is not possible from the European Patent Office documentation to

discover what the main technical field of the primary examiner is. It is

possible to determine a name from the filing documentation, but unlike

US patents there is no examiner name cited on the actual patent which

means that we cannot easily discover the examiner’s main expertise

through a quick search of patent documentation. It is possible, perhaps,

to suggest that it was not in the field of legal document assembly.

The finding of inventive step (the ‘problem and solution’ approach) is

founded on the notion that the relevant prior art has been determined. In a

situation such as software where the prior art may have been a program

written in the 1970s or 1980s for which the documentation has been lost or

resides in a cupboard somewhere, or where the documentation is simply the

source code of the program, how is the examiner to be enabled to determine

that prior art? Clearly, in this example there is a substantial amount of prior

art which the man ‘skilled in the art’ would be aware of, yet which appears to

be hidden from the view of the examiner. If the relevant prior art is not found,

then an invention can be incorrectly assumed over the found prior art.

The actual examination situation is worse than this, because there is a

presumption that only prior art which is available is actually prior art (see,

for example, T0144/9540) and there is much in the way of program source

code and object code which exists but not in any usable format by the

examiner – that is, it is most unlikely to be indexed, well documented, or

available for easy inspection.41 Given, too, that most code has not been

circulated, the actual quantity of textual material in the public domain will

39 See discussion of the procedural split between examination and search and its recombi-
nation under the Best programme in Leith, Harmonisation of Intellectual Property in
Europe. This has now been revised and DG1 and DG2 have been combined into DG1
where both search and examination take place.

40 ‘It is true that the case law of the boards of appeal clearly indicates that the theoretical
possibility of access to information renders it available to the public. This is certainly true
of a document in a library or a specific device in a place accessible to the public. This
principle however can only be applied after the document or the device has been
identified so that its information can be unequivocally defined. If such an identification
is impossible, i.e. if it is uncertain that the document or device ever existed or it is
uncertain in which precise form it existed, then the document or device cannot be used
for patent purposes.’ T0144/95, 26 February 1999.

41 J. Weyand and H. Haase, ‘Patenting Computer Programs: new challenges’, IIC 36
(2005), 647–63 suggest that obligatory lodging of source code would ‘provide a reliable
basis to ensure that [CCI] . . . are not patented without disclosure and transparency’. This
would provide prior art from only those inventions for which protection had been
requested but would also impinge upon other trade secret rights or the reverse engineer-
ing prohibition. It neither seems practical nor covers the parallel conceptual nature of
software as outlined here in Chapter 2 (e.g. protection of the metaphor).

120 Software and Patents in Europe

be very much less than that which is represented by ‘know-how’ (which

comprises part of the skill in the art). Even that code which has been made

public may well be in such an obscure location that it cannot be found – the

author’s own Ph.D. thesis describes an InterLisp program from the early

1980s (it is not, to my knowledge, currently possible to access a system

which will execute this program) and is thus ‘public’ but the only versions

of the code lie in my office in a now-aging listing and on a magnetic tape.

How is the examiner to include such know-how in the process? Only if they

have sufficient relevant expertise in programming techniques, perhaps?

Macrossan and more document assembly: levels

of technical contribution

Patents such as that of Woodcock lie close to the border between software

and ‘business method’ patents, but the specification of the patent does not

reflect that there exists prior art in the business field which relates to the

manual construction of legal documents through the use of precedent

books.42 A criticism of many similar patents is that there is actually no

novelty at all – that they simply take well-known methods and claim novelty

by adding computerisation. (A similar criticism was made of patent offices

which granted protection on devices utilising transistors when the technol-

ogy moved away from that based on valves.) It appears that some offices are

stricter in denying the mechanisation of well-known tasks than others (the

UK office appearing to be more strict than the EPO). But while one might

have thought that the EPO examiner in this patent would have raised these

issues, the filed documentation does not show it having been seen as a

potentially important issue at all. One wonders, therefore, whether the

EPO is moving closer to the US Office, which latter appears happy to

provide protection for well-known methods newly computerised.43

Macrossan’s application (WO024295344) concerned a method of con-

structing ‘corporate entities’ over the internet and is particularly interesting,

42 Many legal publishers provide a number of texts containing standard precedent clauses
which can be manually put together into a single document such as a contract or licence.

43 For an example of this which relates to patent documents, we can see US 7,076,439
which relates a method of ‘managing projects’ – the implementation concerning a system
which keeps details of patent applications, deadlines and then sends reminders to the
individuals involved providing ‘options not available on the conventional docketing
systems, such as automatically increasing the frequency with which reminders are sent
as the deadline approaches, and automatically increasing the number of individuals to
whom the reminders are sent as the deadlines draw near’. This appears to be a very well-
known technique and thus surely hardly novel.

44 The PCT request for examination was made at both the EPO and the GB offices,
working from the same application document. An Australian patent (AU759130B) has
been granted.

Software patent examination 121

given that it was subject to consideration in both the London High Court

and Court of Appeal (which we look at in Chapter 5). The general invention

follows the schema of the document creation application above: questions

are answered by a user at a remote browser, saved in a database and then –

when sufficient information has been collected – the legal documents to

form the entity are printed out or electronically submitted. The application

was made in November 2001 from an earlier filing of November 2000, a

period where the internet was important in terms of business opportunity.

The international search report cited four pieces of prior art which the

search examiner considered to be documents ‘of particular relevance; the

claimed invention cannot be considered to involve an inventive step when

the document is taken alone’. The technology outlined in the application is

of little novelty – for example, the list of errors which are checked for include

‘entry . . . of a negative amount in a field which may only validly accept a

positive amount’ is hardly – given the history of data processing at that point

in time – a major advancement. However, the application also lays out more

advanced error checking where the statements input by the user are used to

check, for example, whether the user has input sufficient resident directors

legally required by the local regulations.

The application contains some fifty pages of program description,

laying out clearly the functionality and the operating methodology of

the program, and also contains sixteen pages of diagrams, which include

hardware, screen shots and flowcharts. Given the detail in the applicat-

ion, few could argue that Art. 83 EPC (Disclosure of the Invention) –

‘must disclose the invention in a manner sufficiently clear and complete

for it to be carried out be a person skilled in the art’ – has not been more

than sufficiently met. The system at the heart of the application is in

commercial operation (UKCorporator.com) and one of its co-owners,

when asked why the patent was being sought, answered:

We haven’t turned our minds much to what should or should not be the state of
the law in this area. Rather we have focused on the current state of the case law,
and the relevant statute, and concluded that our subject matter is patentable. We
also noticed these three granted UK/EU patents and concluded that if they are
patentable then our subject matter is even more so –
* GB2373624 (a UK patent, granted in or after 2002, for an Automated Online

System for Generating Exam Questions);
* GB2345997 (a UK patent, granted in or after 2002, for an Automated Online

Dispute Resolution System);
* WO9506294 (a EU patent, granted in the mid 1990s, for an Automated Online

Loan Application System).45

45 Online at http://www.emailbattles.com, dated 9 June 2006.

122 Software and Patents in Europe

The application was filed through the international PCT route and exami-

nation was requested at both the UK Office and the EPO, the latter –

at the time of writing – appearing to raise the same issues which were

raised in the UK office. The hearing officer in the UK had rejected the

patent application,46 relying on all three of the commonly raised exclu-

sions in the context of software-related business patents:
* the mental act exclusion;
* the computer program exclusion;
* the business method exclusion.

Some discussion of novelty and obviousness was also raised by the exam-

iner, but only the questions of whether the application could proceed to

those issues were at the core of the hearing officer’s decision.47 The

hearing officer noted that the three patents (above) were brought to her

attention, but that these were irrelevant, since each case had to be decided

upon its own facts. She found that all three exclusions were appropriate,

and then moved on to deciding whether they were relevant ‘as such’ – that

is, was there a ‘technical contribution’ which removed them from the

excluded categories? The applicant’s arguments were various, but essen-

tially can be reduced to one which suggests that a program carrying out a

task is necessarily technical.48 The applicant’s arguments did not per-

suade the hearing officer, who concluded:

I have tried my utmost but I simply cannot see that the method is other than a
computer system programmed in such a way as to provide a guided question
session in response to answers given by a user and to then provide expert advice to
the user in the sense of generating documents in an electronic format.

and also put the application into the ‘business method’ basket:

Whilst there may be economic benefits and reduced risks in computerizing the
production of these legal documents, I do not consider that problem to be a

46 BL O/078/05 March 2005. GB application, GB 0314464.9
47 Little wonder that novelty and obviousness seemed pertinent. Claim 1 is: ‘1. A method

for assisting in the formation of a corporate entity, in an answering session, said method
comprising the steps of : (a) interactively communicating via an interactive communica-
tions device, a series of questions to a user attempting to establish said corporate entity;
(b) permitting said user to provide an answer to said set of one or more questions; (c)
successively selecting a further set of one or more questions for display to said user, at
least one of said selection being dependent upon said user’s previous answer or combi-
nation of previous answers; (d) permitting said user to answer said successive set of one or
more selected questions; (e) repeating steps (c) to (d) until said user has provided enough
information to allow for the determination as to which documents are legally required for
the formation of the said corporate entity; and (f) generating the legally required docu-
ments referred to in step (e) in an electronic form.’

48 The applicant also suggested that a ‘pre-saving algorithm’ was a technical contribution,
rather than saving after the information was input.

Software patent examination 123

technical one. It is a problem which I consider to be a business or administrative
problem and it is solved by providing an automated tool to stand in for a legal
expert. Whilst these outcomes may all be highly desirable, desirability is not the
test an invention must pass to avoid the exclusions. However desirable it may be, I
can see no technical contribution provided by the invention.

If Macrossan’s application had been part of a system which gathered

information and then produced a legally correct method to control a

manufacturing process (soup, perhaps49) or an aircraft, then would it

have been excluded from protection? It seems unlikely that it would have

been refused by the patent office if it had been part of such a mechanistic

operation. We do see, though, that applications of a similar kind to that of

Macrossan are granted. For example, the Menashe patent which was

discussed in Chapter 1 is as tenuously ‘mechanical’ as that of Macrossan

and perhaps explains the attitude of the applicant which seems to be one of

‘if they got protection, I should too’. Indeed, one of Macrossan’s com-

plaints (when the refusal was heard at appeal) was that there was a bias

against his application from the UK Patent Office based upon an alleged

secret submission made to the hearing officer by the examiner and also

based upon a Patent Office publication referring to the Patent Office’s ‘. . .
strong tradition of rejecting patent applications for software . . . this tough

approach has ensured that only patents with a ‘high presumption of vali-

dity’ are granted’, the argument being that the application was being dealt

with more harshly than other applications.

The primary discussion in procedural matters is usually that different

offices have different levels of inventive step – a fact which is well accep-

ted. It may be, though, that there are other differing levels – for example,

the level of what a ‘technical contribution’ is, rather than this being a

simple black/white dividing line. The Hearing Office from the UK Patent

Office appeared to be applying a relatively high level of requirement as to

‘technical contribution’ in support of the examiner’s view, yet other

examiners must be applying a lower level or applications such as

Menashe would be difficult to prosecute through to grant.

Is this a surprise? Not really, if we consider the quotation at the start of

this chapter: pushing the merits of an invention is a matter of psychology

rather than technology. This must imply that patent attorneys, in pursuit of

protection for their clients, will – as part of their tactical toolkit – focus on

those offices which provide the lowest level with regard to ‘technical

contribution’ – which is unlikely at the present time to include the UK

office, this (anecdotally) appearing to have a higher level of technical

49 As suggested in Patent Applications by CFPH LLC [2005] EWHC 1589 (Pat) and
discussed below.

124 Software and Patents in Europe

contribution than the EPO.50 They would also be expected to highlight the

differences in approach between national offices, courts and the EPO as they

apply pressure to push developments in a more ‘client friendly’ direction.

We return to Macrossan in more detail in Chapter 5, but for now point

out that we have an ‘invention’ which – if it is novel and inventive over the

prior art – is being excluded from protection for reasons which are not

related to it as a technological artefact (which it surely is) but because this

is a task at its core which can be carried out by a human as a mental

method. There appears to be very little difference between this applica-

tion and that of Menashe’s gaming system: both systems could be repre-

sented by the type of diagram used by Menashe (see. Fig. 1.1) and both

offer similar types of advantages to their users, one in gaming (surely a

mental method?) and one in document preparation. The question is: how

does an examiner decide when it is correct to apply this exclusion, and

how do we know it is being carried out consistently across the EPC

jurisdiction?

Evidential matters: do the patented ideas actually work?

It is a fundamental assumption of patent law that ideas which are pro-

tected should be workable – thus perpetual motion machines are not

protectable, since they go against well-developed physical theory.51

Evidence can be taken to prove the workability of ideas and Henry

Ford’s litigation over the Selden patents, it has been suggested, was

only terminated when the claimed invention was required by the court

to be built during litigation52 and proved to be ineffective. The rules of the

EPC allow patent examiners to request evidence to be presented but the

guidelines for examination note that evidence is usually taken only in

opposition,53 which suggests that the examiner usually accepts the word

of the applicant that the claimed invention is workable. The examiner will

50 There is no need to use the UK Office at all in order to get protection in the UK, since a
successful European examination will provide a European UK patent.

51 ‘One further class of ‘‘invention’’ which would be excluded, however, would be articles or
processes alleged to operate in a manner clearly contrary to well-established physical
laws, e.g. a perpetual motion machine.’ Guidelines for Examination, PART C, IV, 4.1
General remarks. Also see T 5/86 ‘NEWMAN/Perpetual motion’ [1988] EPOR 301. The
reason for refusal was ‘insufficiency of description’.

52 W. Greenleaf, Monopoly on Wheels: Henry Ford and the Selden Automobile Patent (Detroit:
Wayne State University Press, 1961).

53 ‘Formal taking of evidence in accordance with Rule 72(1) will occur mainly in opposition
proceedings and hardly ever before the Examining Division. The following Sections of
this Chapter are therefore based primarily on opposition proceedings. However, they also
apply mutatis mutandis to other proceedings and particularly to substantive examination.’
Part E, IV, 1.

Software patent examination 125

be relatively expert in the field in which he is operating and, in many fields

(chemistry excepted, due to the difficulty of predicting behaviour from

structure), this expertise allows the examiner to ‘have a feel’ for the

believability of the application and see those which, for example, operate

against physical laws. In the examination of software, this is perhaps an

assumption which is more difficult to make than in the more traditional

fields. Why should this be? Primarily because – as outlined in Chapter 2

and expressed by Moor – software is describable as various artefacts:

theory, model and/or code. Code is fine, model can be more problematic,

but theory is dangerous territory for examination.

Unfortunately for the examination process, much of what is published

in computer science literature, and particularly in that emanating from

the artificial intelligence community, is description of a theory of how

something should operate. This can often be an academic article which

outlines a project which is to be followed54 or, indeed, there can be

dispute over whether what is being described is actually to be found in

the program from which this was coded. A leading example from the

literature of this was the debate over whether a program (AM) was

capable of discovering mathematical proofs.55 But other areas of comput-

ing, too, have had critics56 who have suggested that the programs

described do not work in the manner in which they have been claimed

to work. The culture of computing differs from that of science and

engineering: in the latter there is pre-disposition to require evidence to

be submitted to the relevant community of claimed advances in technol-

ogy. In computing, there often seems to be a sense that theories can be

easily transferred into code – that is, that though it claims to be a science,

it does not necessarily follow the classical scientific method. For example,

very few research programs are ever made available to others for exami-

nation and independent testing and verification.

The computer is not only attractive to AI researchers, but also to those

with even more esoteric views on life and it will be expected that the

computing equivalent of ‘perpetual motion’ applications will be received

at the various offices, and some will be granted.57

54 Usually including, ‘This will . . .’ rather than ‘This did . . .’.
55 G. Ritchie and F. Hanna, ‘AM: A case study in methodology’, Artificial Intelligence

23 (1984).
56 Including this author. See P. Leith, Formalism in AI and Computer Science (London: Ellis

Horwood/Simon and Schuster, 1990).
57 See US 5,734,795, granted March 1998. ‘1. A computer-based system for allowing a

person to experience systems of mythology within virtual reality environments generated
by the computer system, comprising: a) an existential analyzer module (EAM), for
assessing a portion of a person’s meaningful experiential world,’

126 Software and Patents in Europe

In part this problem arises because the malleable nature of computing

appears to offer much to those from other fields: for example, the cogni-

tive psychology community has viewed programs as methods of proving

psychological theories such as that reasoning is rule-based58 and we have

seen applications from the artificial intelligence field which use models

based on rules or brain organisation.59 No doubt, their advocates insist

that these are not theories, but the evidence of the past decades has been

that artificial intelligence artefacts have not taken over the marketplace.

A more mainstream example of recent work being carried where there

is debate over the success of the theoretical model is Latent Semantic

Indexing, a technique which has been around for some decades and

involves giving mathematical descriptions to documents depending

upon their contents. Critics have suggested that the method is still not

particularly effective, though at least one commercial firm is advertising

patent search using the technique.60

Is this any different from the other more traditional fields? Perhaps not,

after all, Selden’s patent was awarded for an invention that was – when

built – effectively a failure as a motorised vehicle – but in the examination

of more traditional fields it is possible for an expert examiner to intuitively

sense the weakness of the application. In software, the breadth of areas

where inventions are being claimed and the lack of a large body of prior

art (to provide evidence as to what is possible) may lead to examination by

those who are more receptive to the idea than they should be.

This should not be taken to imply that the consideration of evidence is a

simple task or that a greater quantity of evidence will solve any examina-

tion problems. In earlier research, it was suggested that presenting evi-

dence to examiners can sometimes be a very successful way of confusing

them. One German patent attorney stated:

The technicians who usually run the oppositions departments are not used to
witnesses and they want to avoid it if they can. It is really a little bit of a trick that
you bring in – as an opponent – something which can only be proved by witnesses
(i.e. public use) in order to force the opposition division to look in more detail to
your written prior art arguments . . . so that they don’t have to hear the witnesses.61

58 The early work of Newell and Simon gave huge impetus to the expert system model.
59 Neural networks have been popular areas for patent applications, yet the field too is

considered problematic by sceptics.
60 ‘PatentCafe’s Latent Semantic Analysis search engine is recognized as the industry’s

most advanced concept search technology.’ See http://www.patentcafe.com. In the
1980s and 1990s many commercial companies sold software as ‘expert systems’ or
including artificial intelligence techniques but that is hardly proof of technical success:
more possibly it is proof of imaginative marketing.

61 Leith, Harmonisation of Intellectual Property in Europe p. 96.

Software patent examination 127

Such a tactic would appear to be particularly relevant and useful in

software where ‘public use’ is perhaps more likely to be found than a

well-documented description of the invention.

Classification system developments

The importance of a good classification system can be seen by WIPO’s

description of its International Patent Classification system (the IPC):

6. The Classification, being a means for obtaining an internationally uniform
classification of patent documents, has as its primary purpose the establishment
of an effective search tool for the retrieval of patent documents by intellectual
property offices and other users, in order to establish the novelty and evaluate the
inventive step or non-obviousness (including the assessment of technical advance
and useful results or utility) of technical disclosures in patent applications.

7. The Classification, furthermore, has the important purposes of serving as:

(a) an instrument for the orderly arrangement of patent documents in order to
facilitate access to the technological and legal information contained
therein;

(b) a basis for selective dissemination of information to all users of patent
information;

(c) a basis for investigating the state of the art in given fields of technology;

(d) a basis for the preparation of industrial property statistics which in turn
permit the assessment of technological development in various areas.62

The classification system allows examiners to apply one or more codings

to applications as they arrive which describe the contents of the applica-

tion.63 Unfortunately, from the point of view of software examination, the

European classification systems64 are primarily located in the hardware

view of invention and do not reflect what we have been describing as the

‘programmer’s view’ – a programmer involved in ‘operating systems’ or

‘database design’ would not find classifications which were explicitly

appropriate for their fields: instead, they would have to look throughout

several classifications (G06F would have been the primary classification,

however) to find relevant prior art. The lack of such a coherent descrip-

tion of applications and specifications explains why it has been so difficult

to produce statistics on software patenting and in part explains one of the

potential difficulties in software examination – that of finding relevant

prior art within the patent corpus.

62 WIPO, International Patent Classification Guide, 8th edn (2006).
63 This is clearly a time-consuming but important task and there have been attempts to

automate this. See M. Krier and F. Zaccà, ‘Automatic categorization applications at the
European patent office’, World Patent Information 24 (2002), 187–96.

64 A combination of the IPC and a more detailed European ECLA.

128 Software and Patents in Europe

Indeed, the revision to the IPC in 2006 shows just such a development

in classification techniques, with a slightly more software-oriented

approach to invention, but a more appropriate classification might enable

even better access. For example, the robot control program which was

described in Chapter 2, we might consider to be classed somewhere in

G06F relating to ‘programming languages’, but, rather than being viewed

as software, such systems are currently set in other fields – such as B25J

(manipulators) and G05B (control or regulating systems).65 There is, in

fact, no classification which covers the computer scientist’s ‘program-

ming language design’,66 the closest being G06F 9/44.67 There are

approximately 800 granted EP patents in this latter sub-field, with a

relatively wide spread of type which – it is suggested – would not appear

to a computer scientist to be a particularly ‘logical’ taxonomy. Is this a

major difficulty? Probably not in examination, since an experienced

examiner will have an understanding of where relevant prior art will be

found. However, it may be problematic in terms of enabling competitors

to determine whether an area is free to work by doing a search of patent

documentation – particularly if SMEs wishing to avoid infringement are

involved.

A first classification may not be the most appropriate and this can be

amended through prosecution of the application. However, if patent

applications are to lie unexamined for several years after publication (as

is the current practice due to workloads) then prior art searchers will find

these difficult to access and thus to work around.

The US office has a ‘Class 705’ to reflect the new information industry

inventions (i.e. ‘business methods’)68 and the revised 2006 IPC classifica-

tion system now has a similar class (G06Q), which does give us more useful

insights into patenting activity from applicants and demonstrates that, as of

65 See, e.g., EP1700175, ‘Device And Method For Programming An Industrial Robot,’
published September 2006. The fields searched were G05B, B25 J and G02B. (Abstract:
‘The invention relates to a method for programming an industrial robot by means of a
simulation program. According to said method, control commands are entered using a
manual programming device and said commands are displayed in visual form on a screen
as displacement and/or processing operations of the robot, based on the data of the
latter. An object to be manipulated is likewise represented on the screen and a three-
dimensional image of the robot and the object is reproduced.’)

66 For the terminology as used by those ‘skilled in the art’ see ACM Sigplan special interest
group at http://acm.org/sigplan/.

67 Also related is 9/44 ‘Compilation or interpretation of high level programme languages’.
See for example EP140184 (A1) ‘Programming Language Extensions for Processing
Xml Objects And Related Applications’, filed June 2002. There are just over 100 EP
patents with this classification (as of late 2006).

68 Class 705 Data Processing: Financial, Business Practice, Management, Or Cost/Price
Determination. See www.uspto.gov/web/offices/ac/ido/oeip/taf/def/705.htm

Software patent examination 129

November 2006, there are almost 2,000 applications in field G06Q –

‘Data Processing Systems Or Methods, Specially Adapted For Administrative,

Commercial, Financial, Managerial, Supervisory Or Forecasting Purposes;

Systems Or Methods Specially Adapted For Administrative, Commercial,

Financial, Managerial, Supervisory Or Forecasting Purposes, Not Otherwise

Provided For’ – which mirrors the US classification 705.

Problems and solutions

At the heart of the EPO’s examination of applications for obviousness lies

the problem and solution approach. This is a formalised attempt by the

EPO to provide a mechanism to make more objective the determination

of inventive step. Without such a formalistic approach it would be diffi-

cult to harmonise both across and inside the various technical fields:

In the problem-and-solution approach, there are three main stages:
(i) determining the ‘closest prior art’,
(ii) establishing the ‘objective technical problem’ to be solved, and
(iii) considering whether or not the claimed invention, starting from the closest

prior art and the objective technical problem, would have been obvious to
the skilled person.69

There are two main problems which might arise when using this approach

with computer-related inventions. First, if the classification does not

properly point to documentation in the field, the examiner will have to

look across all technical fields rather than a specific sub-field relating

to computer science, and he may miss the prior art which is well known

to those skilled in the art. Thus, in the example above of the Woodcock

patent, we can see that the classification used would not have pointed the

examiner towards relevant prior art. It was not only the classification

which was applied to the application that was the problem here, perhaps:

the main problem may be to do with the classification system as a whole,

as discussed in the section above. It is difficult to know the impact of a

classification system, since this is all connected with the way that an

examiner reasons about an application, and a good examiner must be

better able than a less experienced examiner to overcome the types of

problems arising from a poor classification system.

Second, in those areas where the prior art documentation may be scarce

(for one or more reasons), it is possible that the applicant is given more

protection than in areas where there is more prior art documentation. In a

69 Para 9.8 Part C IV-24 Chapter IV, Guidelines for Examination in the European Patent
Office.

130 Software and Patents in Europe

well-worked technical field we would expect this: an invention where there

are lots of other inventions must have lesser scope than where the inven-

tion is new and not simply incremental. However, if the prior art is not

available to the examiner, it is possible that a larger ‘objective technical

problem’ may be erroneously constructed. For example, in business

method applications where there appears to be a dearth of prior art within

the EPO search files, it might be possible for an examiner to conclude70

that the problem is ‘how to automate legal document assembly’ rather

than something more limited, such as ‘providing a mechanism for com-

bining document elements’. This, together with the lack of prior art, may

give the first solution to this problem very wide scope of protection.

Anyone coming afterwards with inventive improvements to this problem

will have to negotiate with the owner of the over-broadly scoped patent,

which is clearly not desirable.

The problem and solution approach has been used for a number of

years but we should expect that for each new technical field there will be a

need to apply the approach in a way that takes account of this new

technology.

Public input to examination

There has been considerable interest in developing some form of public

input to the examination process. In Europe, this has been relatively well

developed with the opposition system after grant. In the US there have

been calls by many critics of the current system to include such a process,

and organisations such as the Public Patent Foundation have been ini-

tiated to oppose what they deem to be invalid patents.71 The primary aim

of these calls are to increase the likelihood of prior art being found and

then to require re-examination by the Patent Office rather than litigation.

In Europe, once the opposition period closes, there is no means for

re-examination by the EPO, though there may conceivably be such

70 It is the role of the examiner to properly determine what is the objective technical
problem, not the applicant.

71 http://www.pubpat.org. As an example of this work we can see their reporting of the
JPEG re-examination: ‘PUBPAT filed a formal request with the United States Patent
and Trademark Office in November 2005 to revoke the patent Forgent Networks Inc.
(Nasdaq: FORG) is widely asserting against the Joint Photographic Experts Group
(JPEG) international standard for the electronic sharing of photo-quality images. In its
filing, PUBPAT submitted previously unseen prior art showing that the patent, which
was issued in 1987 to Forgent’s subsidiary Compression Labs Inc., was not new and, as
such, should be revoked. The PTO granted PUBPAT’s request in February 2006 and
rejected the broadest claims of the patent in May 2006. In November 2006, Forgent
abandoned all assertion of the patent.’

Software patent examination 131

with national offices. The US re-examination system appears to work

reasonably well within the software field – an early victim was that of

Compton’s multimedia patent (US 5,241,671)72 – and it may be, given

there is centralisation of examination within Europe, that there should

also be the development of a centralised system of re-examination if prior

art should be found outwith the opposition period. Re-examination on

novelty, for obviousness, sufficiency, etc. would also be a possibility but

the procedural mechanism whereby this was initiated by outside parties

appears more difficult to imagine, since it might effectively remove val-

idity hearings from national courts – whether either the EPO or national

courts would welcome that is a moot point.

There are other approaches being suggested. For example, opponents

of the CII Directive have developed more confidence in their ability to

challenge the EPO’s hegemony. One of these is to ‘privatise’ examination,

so that:

The system of obligatory patent examination should be replaced by a system
where patents are registered free of charge on the Internet, and examination is
performed by private parties who, when they find an invalid patent claim, are
entitled to charge an examination fee from the patentee.73

The idea behind such schemes is that those who produce ‘bad patents’

should pay for their negative costs to the community. However, even if

there was a mechanism whereby all could agree that a specific patent

was actually an invalid patent (surely the owners would not agree?),

given the time taken to examine a patent to a sufficient degree of

quality and the numbers of software patents which are being granted

by the various offices, it seems unlikely that there would be sufficient

goodwill in the community at large to examine all patents and one

might suggest that even more such ‘invalid’ patents would enter the

system.

Conclusion: does a European examination matter?

The whole point behind the setting up of the European Patent Office

was that it would reconcile the problems of examination across Europe

and provide a harmonised level of patent grant throughout the

European economic community. It has certainly gone a very long way

72 Though there are some who believe that the result was biased due to re-examination
being requested by the PTO Commissioner rather than by an independent person. See
T. S Hughes, ‘Patent Re-examination and the PTO: Compton’s Patent Invalidated at the
Commissioner’s Request’, John Marshall J. of Comp. & Info. Law XIV (2) (1996).

73 At http://a2e.de/ffii/epla/cpedu/exam/.

132 Software and Patents in Europe

to achieving this aim, primarily through the very large numbers of

examinations which it carries out in comparison with the national

offices. However, it is clear that we have now – particularly in the

software arena – arrived at a situation where the European examination

is perhaps not sufficiently geographically wide-ranging to suit the soft-

ware industry. Why is this? Principally because many of the software

inventions being granted are based on telecommunications ideas which

transcend both national and continental borders. Thus a high quality

but slow examination in Munich is of little value when a low quality but

speedy examination in, say, the US office leads to a situation where

industry is faced with poorly examined multiple patents in software

technology fields across the world. Although patents are national, the

software marketplace is international: could Blackberry have continued

as a successful enterprise if the European patents had been denied or

revoked and the US ones stood and the US patent owner who claimed

infringement by Blackberry refused a licence?

International pressure has therefore been applied to attempt to upgrade

examination throughout the world, with WIPO and its Standing

Committee on the Law of Patents being at the forefront. In February

2005 this committee:

agreed that the following six issues should be addressed in an accelerated manner
within WIPO with a view to progressive development and codification of interna-
tional intellectual property law: prior art, grace period, novelty, inventive step,
sufficiency of disclosure and genetic resources. These issues should be addressed
in parallel, accelerated processes.74

Clearly, the attempt was being made to resolve various issues which are

at the heart of examination but which – to the participants – were being

held up by the attempt to produce a fully developed Patent Law Treaty.

Unfortunately, a number of countries75 objected to the attempt to push

some aspects of the PLT forward at the expense of others and the accel-

eration endeavour failed. The result is that harmonisation across the

technologised world continues to be fragmented and with differing

examination goals and environments.

Given this, does the quality of European examination matter? My own

view is that it does, and that the quality of examination is an impor-

tant element in building confidence in the system. We see that a constant

and underlying criticism of business method and software patents

granted by the USPTO lies in the belief that so many of these are invalid

and have been poorly examined. Examination is – as I have outlined in this

74 WIPO, SCP/11/3, 7 March 2005. 75 WIPO, SCP/11/4, 21 April 2005.

Software patent examination 133

chapter – difficult, but it does not seem to me to be impossible to produce a

system of examination which is perceived by the users of the system to be as

effective as current examination in chemistry, electronics, etc. The EPO

system was always viewed as offering a Rolls Royce version of examination:

in order to achieve this quality, it seems essential that the specific problems

of examining software should be openly discussed and resolved with the

communities who are affected by it.

134 Software and Patents in Europe

5 Holding the line: algorithms, business

methods and other computing ogres

The feature of using technical means for a purely non-technical purpose and/or
for processing purely non-technical information does not necessarily confer tech-
nical character to any such individual steps of use or to the method as a whole: in
fact, any activity in the non-technical branches of human culture involves
physical entities and uses, to a greater or lesser extent, technical means.1

[With] applications for computer systems for the performance of business
methods, therefore, it is essential to give careful and imaginative attention to
the question of whether or not it is possible to identify some aspect of the system
which can be said to provide a technical effect.2

Introduction

If the history of the EPC in its first two decades was that of continual

attempts to overcome the software exclusions, then the current develop-

ments relating to business methods and algorithms offer a similar future:

pushing the conceptual barriers of patentability until they finally stretch

too far and break under the force of their lack of coherence. The power to

do this lies with the patent attorney profession, who are ‘repeat players’3

in the process, with a relatively common goal: responding to their client’s

demands to extend the protection available for their inventions. The

effect upon any examiner trying to ‘hold a line’ which is based on an

abstract ideal or definition must be difficult, requiring both strong con-

ceptual and organisational mechanisms. In fact we find that once a line

has been so broken the results can surprise: patenting in sports fields in

1 Pension Benefits (2000) T0931/95. All clear then?
2 K. Beresford, Patenting Software under the European Patent Convention (London: Sweet and

Maxwell, 2000), p. 183.
3 This is an important concept from the sociological of study of law, suggesting that the

strategic expertise built over multiple legal encounters is of great value. See M. Galanter,
‘Why the ‘‘Haves’’ Come Out Ahead: Speculations on the Limits of Legal Change’, Law &
Society Review 9 (1974), 95–160.

135

the US where, for example, a means of holding a golf club is subject to

protection.4 ‘Inventions’ in ‘sports technology’ are not new: for example,

we have seen methods to increase performance similar to the ‘invention’

of the Fosbury flop in high jumping which enabled an Olympic gold

medal, or the skating technique in cross-country skiing which similarly

enabled better competitive performance. Since ‘usefulness’ exists with

this type of invention, the policy argument against them is usually that

they remove the presumed ‘level playing field’ at the heart of competition.

Given the huge potential income involved in many individual and team

sports (supported by the intellectual property system and its associated

broadcast and personality rights), it seems churlish to argue that the

creators of new techniques should not be rewarded when users of their

techniques can garner fabulous reward – but many European patent

commentators do take the role of churl.

More seriously, since the strategic goal of business is to deny oppor-

tunity to the competition – by better goods, better salesmanship, better

prices, dominating the technology or simply buying up the competition –

the rise of internet commerce and the possibility of patenting gives

another possible mechanism: excluding the competition through protec-

tion of business methods. If this is deemed unwelcome, can it be stopped?

Or is there a slippery slope from software patent to business method and

beyond? The evidence from the US is that the push for protection con-

tinually grows with, for example, the suggestion that plots and storylines,

too, could be protected by patent.5 This could hardly have been what the

court in State Street expected when they created the ‘useful’ hurdle. In

Europe, being able to draw a clear line in the patent sand is obviously

advantageous since – as the US experience shows – there will always be

those who see commercial advantage in pushing against existing limita-

tions; if a clear line is feasible, it will be much easier to hold.

The conceptual apparatus underlying Art. 52 is not the first such entity

to be subjected to stretching and manipulation. We could suggest that all

mathematical concepts, too, undergo this process as the community tries

to find proofs and refutations of those proofs.6 In mathematics, such

4 US 5,616,089, cited by D. Bambauer, ‘Legal Responses to the Challenges of Sports
Patents’, Harvard Journal of Law and Technology, 18(2) (2005). Application EP1452208
relates to ‘Improved golf club shaft and method of gripping golf club’. ‘An improved
method for holding a golf club, conventional or as taught herein, to provide additional
stability to a golfer during a golf swing is also taught.’ Filed January 2004.

5 A. F. Knight, ‘A Potentially New IP: Storyline Patents’, J. Pat. & Trademark Off. Society
859 (2004). A critical reply is Anonymous, ‘Pure Fiction: The Attempt to Patent Plot’,
Harvard Journal of Law and Technology 19(1) (2004), 231–52.

6 See I. Lakatos, Proofs and Refutations (Cambridge: Cambridge University Press, 1976).

136 Software and Patents in Europe

developments are usually positive, with the growth of the field and under-

standing. Thus the very attempt to produce definitional axioms produces

counter-examples which require monster-barring strategies to ignore

these or refinements and/or amendments to the axioms to include the

counter-examples. Definitional conflict is thus – eventually – welcomed

as a source of advancement.7 An interpretive approach to law would

suggest that legal rules, too, are amenable to such manoeuvring but,

with respect to Art. 52, not all view such developments – as we have

seen in Chapter 3 – as positive.

In discussion of patent protection for software, the practical questions

posed are: whether it is useful – in policy terms – to hold the current

Art. 52 interpretation; and whether it is possible to hold it. This chapter

will therefore focus upon the following questions:
* Where is the current line drawn with regard to ‘traditional software’ at

present?
* Is mathematics protectable and/or should it be?
* Where might the line relating to protection of algorithms ‘as such’ be

drawn?
* Should/could there be a line between traditional and business method

software artefacts?
* And what about ‘information’ – the raw material of information

technology?

Conveniently, some of these points have been discussed in the conjoined

Aerotel and Macrossan appeals in the UK, where the border between

traditional software and business method software arose. The related

point of what might be the future for the institutional structures which

uphold these lines will be dealt with in the final chapter.

The thrust of this chapter is that there are many solid reasons for allowing

protection of software as a technology ‘as such’. In Chapter 1 we outlined

the manner in which software was viewed as ‘mere data processing’ unless it

was linked in with some hardware to produce a hardware-like device, and in

Chapter 2 we outlined why ‘invention’ was an appropriate aspect of soft-

ware. In this chapter we focus on reasons why the current position is an

artifice and where the fault lines lie – those characteristics which will (if the

prediction from Chapter 1 is correct) force realignment and allow protec-

tion for software as software. In the final chapter, we look at the possible

7 Though there are still many around with neo-logical positivist approaches to mathematics.
Many, indeed, have moved into computer science where they undertake such exercises as
trying to prove programs correct (i.e. debugging through mathematical logic). This seems
impossible to this author, given the ‘cogs and wheels’/Albion mills metaphor for the
construction of virtual objects earlier in this text.

Algorithms, business methods and other computing ogres 137

paths towards this re-alignment and also suggest that, rather than being a

totally negative development for computing, it may begin to offer comput-

ing a sounder theoretical basis than it presently has.

What is currently protectable as ‘software’?

(2) The following in particular shall not be regarded as inventions within the meaning of
paragraph 1: (c) . . . programs for computers.

My interpretation of the current situation is that the board of appeal IBM

decisions potentially radicalised protection: it brought the programmer’s

perspective to the fore (albeit in a kind of ‘furtive foreground’, if that is

possible8). The two accepted software claims in the IBM applications

which moved the invention to software ‘as such’ freed the invention from

a Vicom link to hardware – from requiring through a combination of

hardware and software an effect external to the program to only requiring

the internal effect of the software itself. Writing as late as 2004, Lloyd was

describing the effects of the IBM decisions as significant, and – though

seemingly supportive of the developments, describing the failure to pro-

gress as an abdication of responsibility – suggested that these should have

been made in a more political context.9

There was, then, certainly optimism amongst the legal commentators

who understood the logical incoherence of the pre-IBM decisions. Yet,

when we view what has happened since these decisions, we must conclude

that they have not really had as much effect as might have been imagined. In

fact, the acceptance of software claims – ‘programs as such’ – was only

partial. Since the model of acceptable invention was still based upon notions

of machine, ‘pure’ software claims still have to have that special relationship

with the machine. Currently, protected software is protected ‘as such’, but

not all software is given that protection: the examiner must be persuaded

that the software is machine oriented (or in the terminology of the boards of

appeal – ‘technical’). We are thus still at that point which Banks noted:

Whether or not there can be said to be a real distinction between a program
invention claimed in this rather roundabout way and a claim to the program itself
is at least open to doubt.10

8 That is, commensurate with the public statements that ‘programs as such’ were still not
being protected – i.e. that the Board of Appeal had not really legislated despite what it
looked like.

9 I. J. Lloyd, Information Technology Law, 4th edn (Oxford: Oxford University Press, 2004),
p. 439.

10 Para. 474. M. A. L. Banks (Chairman), The British Patent System: Report of the Committee to
Examine the Patent System and Patent Law (London: Stationery Office, 1970), Cmnd. 4407.

138 Software and Patents in Europe

This position remains as confusing today as it did to Banks in 1970 and we

find the judiciary still wrestling to find a more formal approach than the

intuitive ‘engineer seeking for the technical’. Thus, in CFPH’s Application,

the judge attempted the use of a metaphorical ‘little man’ to try to highlight

the line across which patentability could not be offered. This ‘little man’

test might thus help to distinguish when an application dealt with a ‘pro-

gram as such’ or with an artefact which could be patented:

But the mere fact that a claimed artefact includes a computer program, or that a
claimed process uses a computer program, does not establish, in and of itself, that
the patent would foreclose the use of a computer program. There are many
artefacts that operate under computer control (e.g. the automatic pilot of an
aircraft) and there are many industrial processes that operate under computer
control (e.g. making canned soup). A better way of doing those things ought, in
principle, to be patentable. The question to ask should be: is it (the artefact or
process) new and non-obvious merely because there is a computer program? Or
would it still be new and non-obvious in principle even if the same decisions and
commands could somehow be taken and issued by a little man at a control panel,
operating under the same rules? For if the answer to the latter question is ‘Yes’ it
becomes apparent that the computer program is merely a tool, and the invention
is not about computer programming at all. It is about better rules for governing an
automatic pilot or better rules for conducting the manufacture of canned soup.11

But the ‘little man’ test is, once again, ‘machine-oriented’: if the applica-

tion can be viewed as a machine ‘in the round’ rather than as a method for

carrying out a task which is based in a program alone, then it is protect-

able. This includes viewing it as some new and inventive set of rules to be

followed by a ‘little man at a control panel’ (indicating, one supposes, that

he is simply a cog in the machine) then it is similarly protectable. The

‘little man’ test at first seems sensible because it appears to provide a

simple technique to differentiate patentable from non-patentable inven-

tions. It also applies a similar kind of test to patentability of computer

related inventions from those applied in other areas: would we remove

the possibility of patentability from a chemical process because it could

be carried out by a little man at a laboratory desk? Unfortunately, in

practice, the test seems less easy to utilise that we might imagine, as the

discussion in Oracle’s patent application demonstrated.12 For example,

does it mean that we should not be too concerned about an invention

11 Patent Applications by CFPH LLC [2005] EWHC 1589 (Pat), para. 104.
12 BL O/254/05. The application related to conversion of, for example, SGML to HTML

formats. Generally, this kind of conversion is not always easy and invention would be
valuable: the Department of Constitutional Affairs’ Statute Database project in the UK
has had significant problems in moving from the early SGML version to XML (an
extended version of HML) and a system which could have carried this out with minimal
human input might have saved the taxpayer large sums of money.

Algorithms, business methods and other computing ogres 139

having a basis in software, or is there something we need to look at in

terms of the role of the little man, or does it just mean that if there is no

equivalent to the aircraft or soup then there’s no patentable invention? As

with many judgments dealing with patentability of software, we can be

left as confused after the decision as we were before,13 yet a patent office

must include such directions within their guidelines.

The continuing problem, for the examiner and judge, is determining

just where the line dividing a ‘technical’ contribution and a ‘non-technical’

contribution lies. The guidelines for the EPO (and the slightly differing

guidelines for other offices such as the UK14) try to provide a simple, step-

by-step approach, but in practice (as we saw in Chapter 4), the result

may be based as much in the nature of the interaction between examiner

and applicant’s agent as in the formal procedure to be followed.

So where are we with protection? Basically, not much further on from

that of Vicom – the programmer’s voice is still in reality little heard.

However, if the programmer’s words are moulded (by the patent attor-

ney) to produce a machine-like artefact or process then protection for

‘software as such’ is available. The disadvantage of this – in the author’s

view – is that software technology is not being dealt with in the manner

properly required by such an important technology (i.e. with proper

development of claim terminology, sufficiency, clarity, etc.) but with a

descriptive language borrowed from a different technology. However, the

advantage which arises from the current position is to those who design or

manufacture inventive artefacts which include a program (for example,

DVD players and other computerised devices). They have protection for

the device as a whole and, if the invention lies in the software, then that

software is protectable, too. But without the linkage with the device, there

is no protection.

The situation at present appears to be that since a useful invention in

software cannot be protected ‘as such’, it must be tied to some other

device or technical process or business system. This implies that we can

have a large number of inventions which can be protected (application X

using inventive technique A, application Y using inventive technique A,

application Z using inventive technique A . . .) but the primary useful

invention – technique A – cannot be similarly protected. Such a situation

appears illogical.

13 That appeared to be the common perception after the earlier Fujitsu case – see I. Lloyd,
‘Software Patents After Fujitsu. New Directions or (another) Missed Opportunity?’,
Journal of Information, Law and Technology 2(1997). He continues the critical stance on
Fujitsu in Lloyd Information Technology Law.

14 Patents Act 1977: Patentable subject matter, 2 November 2006.

140 Software and Patents in Europe

It is important to see that the line as currently drawn is not a technical

one at all. It is, in fact, a social line which is being drawn – the Boards

of Appeal are representing an engineering community and their view of

what is technical is one which is relevant to the intellectual model of that

engineering community. We see this in the Pension Benefits quotation at

the start of this chapter: they cannot use technical as a dividing line

because technicality is everywhere, so they draw from a shared commun-

ity of experience and thought – the artefact (a machine) is central to

that experience and so it is that which they use as a line in the sand.

Unfortunately, socially constructed lines are difficult to hold.

Algorithms and mathematics: are the models broken?

(2) The following in particular shall not be regarded as inventions within the meaning of
paragraph 1:

(a) discoveries, scientific theories and mathematical methods;
. . .
(c) schemes, rules and methods for performing mental acts . . .

Algorithms – as step-by-step procedural operations – are not specifically

mentioned and excluded in Art. 52. There have been two means, how-

ever, through which exclusion could be enabled – as mathematical meth-

ods on one hand or, on the other, as rules and/or methods for performing

mental acts. The distinction between the two is artificial, since any step-

defined algorithm can be modelled mathematically and many computer-

implemented mathematical methods are specified as a sequence of steps

or rules.

Vicom15 was the first of the applications which were taken to appeal at

the EPO and which dealt with the application of algorithm. The objec-

tion of the examiner was that the processing of an electrical signal was

computer-related and also involved a mathematical method – a means of

cleaning up a signal by applying mathematical filters to a data structure.

Clearly this is true, but the Board of Appeal took the view that:

6. The Board, therefore, is of the opinion that even if the idea underlying an
invention may be considered to reside in a mathematical method a claim directed
to a technical process in which the method is used does not seek protection for the
mathematical method as such.

The application was sent back for re-examination, and although the office

intended to proceed to grant,16 formalities were not carried through by the

15 Vicom Systems Inc’s Application [1987] 2 EPOP 74; T0208/84.
16 Letter from EPO to applicant, 4 August 1987.

Algorithms, business methods and other computing ogres 141

applicant and the application was deemed to have been withdrawn.17

However, Vicom set in motion the philosophy laid out in Chapter 1 – that

so long as the invention was machine-like, then it was protectable. We thus

commonly have applications which routinely incorporate mathematical

operations or algorithms, and which proceed to successful grant. For

example, the early EP0138243 outlined a method of increasing the height

of characters on a computer display was filed in 1984 and granted in 1987.

Many patents also involve computations which are used in cryptography:

for example, EP1400056 (Cryptographic Authentication Process, granted

2004) which does not mention a machine in the claims but which has

obviously been read as being used in computer processing.

The question is, why should protection be given to someone who finds

a specific use for a mathematical method (in a machine application), but

not to the originator of the method itself despite the fact that the method

will be known to be generally useful? Why is this dividing line here when it

is not obvious in the mathematical technology that there is any real

distinction between the reasoning or expertise applied? For example, we

could produce a method which effectively allowed us to carry out rear-

ranging work (permutations) on data – say computing inverses of a series

in a program which carried out sorting. This is obviously interesting work

but why is it viewed as protectable (when reframed to satisfy patent

requirements) when the original work upon which it is based would not

be protectable?18 Is there any real difference between the mathematical

usefulness of a method and a method applied where it was designed to be

applied?

While there is a very strong antipathy amongst some of the academic

mathematical community to the idea of protection of mathematical

inventions by patent, this is often balanced by the understanding that

mathematical expertise has an economic value. Knuth, for example,

suggested that elements such as pi should not be protected, but with

something non-trivial ‘like the interior point method for linear program-

ming’ there was more justification for protection because it made it public

rather than being kept as a trade secret19 – a tactic which had been used by

17 Letter from EPO to applicant, 6 October 1988. A US patent was issued – US 4,330,833.
18 D. Knuth, Fundamental Algorithms, Vol. 1, The Art of Computer Programming, 2nd edn,

(Reading, MA: Addison Wesley, 1973), p. 179 outlines this and then notes the origin in
Victorian mathematical methods.

19 ‘Thus, we have reached the end of the era when the joy of discovering a new algorithm
was satisfaction enough! Since programming is strongly analogous to the fabrication of a
machine, and since computer programs are now worth money, patented algorithms are
inevitable. Of course the specter of people keeping new techniques completely secret is
far worse than the public appearance of algorithms which are proprietary for a limited
time’. D. Knuth, Sorting and Searching, vol. 3, The Art of Computer Programming p. 319.

142 Software and Patents in Europe

Isaac Newton to protect his invention of calculus.20 He pointed out that

while he did not charge a penny every time others used a theorem which

he had proved, he did charge to tell them which theorem should be

used.21 Knuth also wondered whether a large integer which proved

mathematically useful might be patentable or whether rather than being

man-made it was actually God-given. A reply came several weeks later

pointing out that such a large integer had indeed been given protection.22

Importantly, as outlined earlier, mathematics and algorithms exist in a

reasonably complex relationship with each other, where theories, models

and code interact: a factor which lawyers sometimes fail adequately to

grasp. Thus, in Newell’s well-known paper, The Models are Broken . . .,23

he pointed out, in reply to Chisum’s argument that there was a solution in

legal interpretation to the problem of algorithms,24 that he was somewhat

bedevilled by confusion about the basic conceptual models used by

lawyers. Newell’s paper argues that law requires a stable view of the

algorithmic process whilst computer science thrives on change, suggest-

ing that never the twain shall meet. It is possible that many legal readers of

this paper will not really have understood why Newell was making this

kind of claim that law could not satisfactorily cope with the new technol-

ogy: in fact it was because, as he went on to say, his career was aimed

single-mindedly at understanding the human mind.25 He was certainly

involved with computer science and mathematics, but he viewed algo-

rithms as central to the working of the brain, hence his work with Simon

on Human Problem Solving.26 Someone who viewed algorithmic rule-

based processing as the manner in which humans reason and solve prob-

lems would hardly be likely to accept Chisum’s more traditional

perspective.

20 Is calculus an invention rather than a discovery? Many mathematicians, I suspect, would
consider it to be an invention. Newton argued with Leibniz over who was the true
inventor both having concurrently arrived at the same techniques.

21 P. 324. Notices of the AMS, vol. 49, No. 3.
22 ‘When asked about software patents, Donald Knuth . . . conjectured that it might be

possible to patent a 300-digit integer. The readers might be interested to know that I have
already patented a 309-digit integer as claim 37 of US Patent 5,373,560, issued in 1994.
It relates to cryptography, and it is not as interesting as what Knuth had in mind. At the
time, some people thought that patenting a number was a new extreme in silly software
patents, but now we have business method patents that are even sillier.’ Roger Schlafly
(Received 13 February 2002), Notices Of The AMS (2002) p. 543.

23 A. Newell, ‘The Models are Broken, the Models are Broken!’, U. Pitt, L. Rev. 47 (1986),
1023.

24 D. Chisum, ‘The Patentability of Algorithms’, U. Pitt, L. Rev. 47 (1986), 959.
25 Cited by his colleague, Herbert A. Simon, in a memoir at http://stills.nap.edu/readingroom/

books/biomems/anewell.htm.
26 A. Newell and H. A. Simon, Human Problem Solving (Englewood Cliffs, NJ: Prentice-

Hall, 1972).

Algorithms, business methods and other computing ogres 143

Another aspect which is often ignored in debates about protection for

mathematical algorithms is that many of these methods are intrinsically

related to the computer and only arose as part of the development of the

computer. A reader of Morris Kline’s classic Mathematics in Western

Culture (first published in 1953)27 will not find the term algorithm in

the index and there is almost no reference to algorithmic procedures. A

text on ‘Mathematics and Western Culture’ published today without

discussion of algorithms would be an object of reviewer ridicule, since

algorithms have become so central to many important areas of mathe-

matics (which areas were relatively minor until the 1950s). Take numer-

ical analysis – a discipline which, while it certainly has a long history, has

become enormously important with the use of computation. Mina Rees,

from the Computing Program at the office of Naval Research was one of

the first to push this new field. She wrote:

[Henry S. Tropp] commented that, as a young assistant professor of mathematics
in 1959, he had never even heard of numerical analysis as an independent area of
mathematics. He said, ‘[one] did applied things in various courses and [one] had a
course called applied mathematics for physicists and engineers which was more
applied differential equations . . . And [one] suddenly realize[d] that out of this
wartime environment a new independent branch of mathematics had suddenly
blossomed. The fact that you founded an Institute for Numerical Analysis indi-
cates an early realization of the independent area of research, where it really didn’t
exist before.’ I replied, ‘But computers didn’t [exist] either.28

This kind of approach – which parallels the developments of hardware to

improve speed and efficiency – is surely as important as the development

of hardware models. During this author’s period in a Mathematics

Faculty,29 I shared an office with a colleague who undertook numerical

analysis-based research into fluid mixing in a paint gun. He could not, he

told me, tell whether his mathematics were correct, his program was

correct or his algorithm from which the program was derived was correct –

the problem was so complicated that errors could be found in any part.

These kinds of tasks are immensely practical and yet, to the patent system,

appear less worthy of reward than a particular design of a paint gun which

may have derived from this work.

The irony of there being practicality in something which is as seemingly

abstract as an algorithm is accepted by some mathematicians who are,

concurrently, opposed to patent protection for mathematical algorithms.

27 M. Kline, Mathematics in Western Culture (New York: Oxford University Press, 1953).
28 M. Rees, ‘The computing program of the Office of Naval Research, 1946–1953’,

Communications of the ACM 30(10) (1987).
29 I am not a mathematician – computing is often found in such faculties.

144 Software and Patents in Europe

For example, Klemens, in Math You Can’t Use,30 argues that software

and mathematics are identical. In purely theoretical terms this is true, but

in practice the ways in which a programmer constructs a program are

rarely similar to that of the mathematician – the programmer is building a

virtual world of objects which can be manipulated and pays little attention

to computational or other theory. Klemens’s argument is that, although

mathematics and software are identical, maths should somehow be

divided off from software, in order that mathematicians can utilise what

he suggests are ‘pure mathematical algorithms’ without fear of falling foul

of the patent system. His solution to the problem is very much like that of

the EPO: that is, if it is a physical device it can be protected but, if not,

then no protection is offered. Klemens uses the notion of a ‘physical state

machine’, which derives from the theory of computability. Essentially,

this is a physical machine which can operate on inputs and outputs (i.e. a

computer or a processor chip): ‘an inventive physical state machine may

be heavily informed by mathematics but would make a nontrivial exten-

sion of that mathematics into the physical world.’31 This is special plead-

ing – Klemens is aware that the inventive activity is in the mathematics

but wants to keep that inventive activity free to use, but still provide

ownership rights somewhere along the line. He therefore gives protection

to the manufacturer rather than to the inventor (since the manufacturer

can produce an ‘application X using the inventor’s technique A’ without

problem). This is fine as a policy decision, but does not appear to accord

with the rhetoric of patenting and the reward theory – why should more

economic advantage accrue to the user of someone else’s mathematical

enterprise?

A different approach using standard patent law could in fact be used –

the experimental exemption, for example – if it is the right to utilise a

protected algorithm in research which Klemens wishes. This exemption

allows what Rimmer has called ‘the right to tinker’32 and although it is

primarily of economic importance in the chemistry area, it could well

cover mathematical usage.

Algorithms which have been protected in the past appear to have been

awaiting the development of the computer. One example is that of the

Soundex algorithm, which provides a method for computing a word

which sounds like another – important in misspelling words and names

30 B. Klemens, Math You Can’t Use: Patents, Copyright, and Software (Washington DC:
Brookings Institution Press, 2006).

31 Klemens, Math you Can’t use, p. 65.
32 M. Rimmer, ‘The Freedom to Tinker: Patent Law and Experimental use’, Expert Opinion

on Therapeutic Patents, Vol. 15, No. 2, 1 February, pp. 167–200 (34).

Algorithms, business methods and other computing ogres 145

for example. This was protected in 1918 and 192233 as an advance in

indexes (that is, in ‘device’ format, but the algorithm was central to the

device) and was particularly useful in processing of census data at a time

when a large number of foreign names might be misspelt or misheard.

And algorithms have been protected in hardware form since the begin-

ning of computing – the bubble sort sorting technique was protected in

hardware form in US 3,029,413 and US 3,034,102. As with the practice

today, both of these inventions lie in the algorithm, with the device being

dressing: form is more important than substance.

Since protection for algorithms has been around for some considerable

time, it is not too obvious that developments in computing or mathe-

matics have been held up in any way. The opponents of protection

consistently push the idea that creativity will be stalled should software

or algorithms be patentable; yet, clearly if, as is the case, software has been

patented for some time, there still appears to be no end in sight to

development and progress. There may be problems – monopoly issues

with patent pools, over-broad claiming, etc. – but these have not pro-

duced chaos in the system.

But what of the line which we may wish to draw? If algorithms are to be

protectable, should those which are not technologically based also be

protected? Can they be prevented from gaining protection? For example,

it is common to use diagrammatic representations of algorithms to aid

procedures in all kinds of areas. The UK Health Protection Agency

utilises an algorithm in flowchart form to advise on the management of

returning travellers from countries with avian flu.34 Assuming this is a

novel and non-obvious method of management, should it be protectable?

It might be excluded under the medical exclusion in Art. 52(4)35 or even

as presentation of information in Art. 52 (2)(d),36 but should it also be

excluded as a rule or method for performing a mental act? We might

believe it is not technology, but others might suggest that it is an example

of ‘nursing technology’ and so the algorithm is essentially technical.

Would that argument get past an examiner?

The Boards of Appeal of the EPO have circumvented the problem of

defining the term ‘technology’ by using an engineering notion of technol-

ogy and, to engineers, this nursing use is obviously a rule or a mental act,

33 US 1,261,167 and US 1,435,663.
34 www.hpa.org.uk/infections/topics_az/influenza/avian/algorithm.htm.
35 EPC Art. 52(4): ‘Methods for treatment of the human or animal body by surgery or

therapy and diagnostic methods practised on the human or animal body shall not be
regarded as inventions which are susceptible of industrial application . . .’

36 ‘(2) The following in particular shall not be regarded as inventions within the meaning of
paragraph 1: . . . (d) presentations of information.’

146 Software and Patents in Europe

so would be unlikely to gain protection. This is a perfectly reasonable way

to go forward: however, such an intuitive approach to what is technical

both leaves a valid field of technology (computer science) outwith the

definition and potentially includes applications which might be viewed as

invalid fields, simply because they can be forced into the ‘technical effect’

straight-jacket. Thus, Beresford’s challenge to his patent attorney col-

leagues is clear in the quotation at the beginning of this chapter: use

‘imaginative attention’ and take on the examiners, he says, and under-

mine the line they are trying to hold by using their own definition of

technology.

Business methods

(2) The following in particular shall not be regarded as inventions within the meaning of
paragraph 1: (c) schemes, rules and methods for . . . doing business.

It is clear that significant application numbers are building in the business

method (G06Q) field. In a short two-week period in November 2006,

some thirty applications were published covering a wide area of ‘invention’:
* Patient Record System (EP1721280).
* Data Processing Method for Time Optimal Computation of Large

Result Data Sets (EP1722326).
* Retail Marketing Method (EP1721291).
* A Multi Site Solution for Securities Trading (EP1721253).
* Method of Interactive Advertising (EP1721460).
* Financial Transactions with Messaging and Receipt Charges

(EP1721292).
* Method for Selecting A Portable Device With An Electronic Tag

(EP1719299).
* Electronic Trading System (EP1719074).
* Dynamic Pari-Mutuel Market (EP1719076).
* Multimedia Content Distribution Platform and Procedure To Create

Such A Platform (EP1720126).
* A System and Method for Processing Audit Records (EP1719065).
* Method and Apparatus for a Collaborative Interaction Network

(EP1716504).
* Computer System and Computer Implemented Method for The

Management of a Bonus System (EP1717738).
* A Device and a Method for Using an Enhanced High Priority Calendar

Event (EP1716526).
* Methods and Systems Rating Associated Members in a Social

Network (EP1716533).

Algorithms, business methods and other computing ogres 147

* System and Method for Developing and Implementing Business

Process Support Systems (EP1716528).
* System and Method Employing Radio Frequency Identification in

Merchandising Management (EP1716518).
* Method and System for Word of Mouth Advertising via a

Communications Network (EP1716525).
* Method for Ordering a Product At An Online Shop Connected to a

Communication Network (EP1717748).
* Method for Broadcasting Information in a Cellular Telephone System,

and Device Therefor (EP1717752).
* Systems and Methods for Software Development (EP1716483).
* Method and Device for Recording of Data (EP1716527).
* Filtering Process for Instant Messaging (EP1717739).
* Information System (EP1716529).
* Method and System for Conducting An On-Line Survey

(EP1716534).
* E-Mail Type Electronic Message Buffer Memory Device

(EP1716532).
* Method of Optimizing Freight of Goods (EP1716523).
* Electronic Trading System (EP1716530).
* Standardizing Intelligent Mail Processing (EP1716524).
* A Project Management Method and System (EP1716509).

It appears to be the case that someone with business technology interests

would glean more about current developments in their field from a

perusal of patent applications than a computer scientist would learn

about their own field: the latter inventions are hidden by confusing

classifications, and by being enveloped within a technical device. On

the contrary, here we see that business methods almost proudly fly the

flag of their ‘innovation’. The EPO has been prepared to grant such

business methods – the infamous ‘1-click’ Amazon patent (EP0927945 –

‘Method and system for placing a purchase order via a communications

network’) was allowed to proceed to grant in 2003. A number of oppo-

sitions were filed and a robust reply was made to these from the patentee’s

representative,37 but there appears at the time of writing to have been no

formal conclusion to this opposition. Claim 1 of the patent is:

A method in a computer system for co-ordinating delivery of a gift from a gift giver
to a recipient, the gift and recipient being specified in a gift order, the method
comprising:

37 Letter to EPO, August 2004.

148 Software and Patents in Europe

– determining whether the gift order includes sufficient information so that the
gift can be delivered to the recipient;

– when sufficient information is not provided in the gift order, obtaining delivery
information from one or more information sources; and

– when sufficient delivery information can be obtained from the additional infor-
mation sources so that the gift can be delivered to the recipient, directing the gift
to be sent to the recipient as indicated by the deliver information.

Whether this is a ‘device-like’ method is open to argument, but clearly

shows the application types which are building up in the EPO and other

patent offices and in some cases moving on to grant. A similar approach to

the EPO was taken in Australia, where a business method must arrive at a

‘useful product’ – a physical phenomenon or effect resulting from the

working of the method (more than mere ‘intellectual information’).

Interestingly, for the Macrossan application discussed in Chapter 4, the

court in Grant38 suggested that:

34 The interpretation and application of the law would not be considered as having,
in the words of NRDC, an industrial or commercial or trading character, although
without doubt it is an area of economic importance (as are the fine arts). The
practice of the law requires, amongst other things, ingenuity and imagination which
may produce new kinds of transactions or litigation arguments which could well
warrant the description of discoveries. But they are not inventions. Legal advices,
schemes, arguments and the like are not a manner of manufacture.

Macrossan’s application was granted in Australia and involves the inter-

pretation of law and procedure to provide a system which effectively

replaces a lawyer in practice. Is Macrossan’s Australian patent invalid

after Grant? It is difficult to tell because the border between where legal

practice begins and commerce ends is not clear to this author: I tell law

students that they must remember that the practice of law is a business.39

Such problems in asertaining where the line exists bedevil the exami-

nation of many patent applications. In Hitachi40 the board of appeal were

clearly unhappy about the basis of the application being essentially a

Dutch auction, where the technical problem (having delays caused by

the communications network running the auction) was overcome, or

rather sidestepped, by changing the rules of the auction rather than by

solving them by the technical means of, say, having an extra server some-

where. In the UK, such questions had been discussed in various judg-

ments but a lack of clarity appeared to lead to two actions in the High

38 Grant v. Commissioner of Patents [2006] FCAFC 120, 18 July 2006.
39 See J. Morison and P. Leith, The Barrister’s World and the Nature of Law (Buckingham:

Open University Press, 1992).
40 T258/03.

Algorithms, business methods and other computing ogres 149

Court being considered useful tests for the Court of Appeal, who allowed

the appeals to be heard. These were Aerotel41 and Macrossan,42 the first

having been declared invalid and the second refused on appeal in the Patents

Court. We have already outlined the nature of the Macrossan application in

Chapter 4. The Aerotel patent had a similar business basis but involved

communications technology: the involvement of a special exchange which,

through a ‘special code’, allowed calls to be pre-paid and accessed through

the special exchange. Jacob LJ, for the court, noted that there were method

and system elements to the claims – a ‘method of making a telephone call’

(claim 1) and ‘a telephone system for facilitating a telephone call . . .’ (claim

2). With Macrossan, too, there was a method and system element: ‘A

method for producing documents for use in the formation of a corporate

entity using a data processing system, the system comprising . . .’
To the computer scientist there appears little between the two appli-

cations, and in fact in the original Aerotel decision on validity, Lewison J

had noted that none of the technology was new and that, despite the

system having (in the words of the patent holder) revolutionised the way

that telephone calls could be made, ‘[n]othing else in the patent of a

technical nature, in the sense of equipment, is said to be new and none of

that technical equipment is described except in the most general terms’.

What was being described was being viewed by the judge as a non-

technical business method, just as many computer scientists would sim-

ilarly view the patent. Computer scientists would view the two as similar

primarily because they do not actually rely upon any specific hardware

elements – the inventive aspects would lie in the manner in which these

were implemented and programmed. The patent and applications may

both cite hardware but it is the control elements which are important (i.e.

the software, algorithms, data/information structures, etc.) Aerotel used

well-known digital communication exchange hardware but linked them

together with software control (using codes, payment schemes, etc.) and

Macrossan utilised well-known hardware (including the internet, and

servers) but the invention, if any, was in the software system which

produced the legal documents.

41 Aerotel Ltd. v. Telco Holdings Ltd [2006] EWHC 997 (Pat). The patent is GB2171877:
Telephone System (‘A telephone system is provided for enabling prepayment for tele-
phone calls, wherein special code and credit information is stored in memory in special
exchanges and debited as the call progresses. The system includes a special exchange
having a memory 86 for storing special subscriber codes and credit information. Verifying
means 83, 84 verifies a caller code and checks that the caller has available credit. Means
89, 91 are provided for then connecting the caller to the called party.’)

42 Macrossan v. Comptroller-General of Patents, Designs And Trade Marks 2005 [2006] EWHC
705 (Ch).

150 Software and Patents in Europe

Aerotel succeeded and their patent was reinstated but Macrossan failed.

Why was this? Macrossan’s ‘method’ it was held:

is for the very business itself, the business of advising upon and creating appro-
priate company formation documents. . . . The final step is to ask whether there is
anything technical about the contribution – there obviously is none beyond the
mere fact of the running of a computer program.43

But Aerotel’s use of hardware was deemed to provide a technical

contribution:

The important point to note is that the system as a whole is new. And it is new in
itself, not merely because it is to be used for the business of selling phone calls. So,
moving on to step two, the contribution is a new system. It is true that it could be
implemented using conventional computers, but the key to it is a new physical
combination of hardware. It seems to us clear that there is here more than just a
method of doing business as such.44

This is in line with the thinking of the EPO, and the court in its discussion

of the law tried to fit in with the European approach. But as Jacob LJ

described it:

It is clear that a whole range of approaches have been adopted over the years both by
the EPO and national courts. Often they lead or would lead to the same result, but
the reasoning varies. One is tempted to say that an Art. 52(2) exclusion is like an
elephant: you know it when you see it, but you can’t describe it in words. Actually
we do not think that is right – there are likely to be real differences depending on
what the right approach is. Billions (euros, pounds or dollars) turn on it.45

A critical reading of the Aerotel patent and the Macrossan application –

which suggests that both are more business method than device – might

propose that the only real difference was that one must have been reading

the urgings of Beresford and his ‘imaginative attention’ to ‘identify some

aspect of the system which can be said to provide a technical effect’. That

person does not appear to have been Macrossan. Macrossan put insuffi-

cient imagination into finding a technical contribution to give the necessary

form to his application. The burden is certainly on the patent applicant to

ensure that the claims fit the requirements of the examiner: and this appeal

judgment now gives a relatively focused direction as to what must appear in

the application document in order to pass the hurdle of technical contri-

bution. Patent attorneys will be mulling over the ruling, and applying the

required imagination to their draft applications – and the difficulty of

knowing when a substantive rather than a formal advance is presented to

the examiner will surely become progressively more difficult.

43 Aerotel Ltd v. Telco Holdings and others Rev 1 [2006] EWCA civ 1371 at paras. 71, 72.
44 Para. 53 (emphasis added). 45 Para. 24

Algorithms, business methods and other computing ogres 151

Another critical reading would suggest that we have a classic example

of how, in attempting to prevent software patents ‘as such’ from gaining

protection, we allow something which some might consider much worse –

business methods. The gatekeeper which is supposed to deter software

actually enables business methods to get protection more easily – simply

by locating a sufficient technical contribution we turn a business method

into a non-business method and system. These kinds of applications, the

critic would suggest, are actually technically very easy to implement: once

you know the business model, it could be implemented any number of

ways by a person skilled in the art. But the EPO’s approach hides that

element and allows the protection as something new – an artefact which is

primarily an ‘inventive’ business method implemented with standard

technological knowledge. Such a conclusion is fine if the goal of the

patent system is to protect computerised ways of doing business, but

according to the rhetoric of the patent offices this is not their desired goal.

It may be that business methods are not are as problematic as their

critics would suggest, a position taken by Stobbs, who argues that patents

are but one part of a business strategy and not always the most important.

Further, that:

civilization as we know it did not end when the Patent Office granted Priceline.com
its business model patent on the name-your-own-price concept . . . It did not give
Priceline.com a broad monopoly over offer-and-acceptance.46

This is obviously a position which the anti-software lobby would oppose

vehemently.

Information

The discussion in Chapter 2 of the nature of programming suggested

that it was the building of virtual worlds using data objects and methods

of manoeuvring those data objects. These virtual worlds reflected the

world outside the program – either representing it in terms of information

input/output or controlling other devices such as robotic arms. At the

heart of the programming process is thus data, or information. My reading

of the exemptions of Art. 52 suggest that it is the ‘informational’ of the

46 G. A. Stobbs, Business Method Patents (New York: Aspen Law & Business, 2002) p. 22.
Priceline.com was one of the ideas output by Walker Digital (http://www.walkerdigital.
com/) a venture designed to ‘invent’ and protect various new computerised business
models. At November 2006 the website of the company was laying claim to over 200 US
patents. The difficulty of moving these from patented idea to successful business perhaps
demonstrates Stobb’s argument that patented business methods do not unduly affect the
marketplace. Once again, many will not agree with this view, pointing out that unneces-
sary rent-seeking is being encouraged rather than inventive activity.

152 Software and Patents in Europe

exemptions which underlies the general sense of them having a common

underlying theme, rather than any ‘abstract nature’. The problem for

‘information’ is that it is viewed as an abstract form: it is a collective term

which almost denies that it can related to specifics, but it certainly is

specific in terms of a programmer.

The exemption in Art. 52(2)(d) relating to ‘presentations of informa-

tion’ is of different aspect, being about presentation rather than processing.

The concern of programmers is not really presentation, but how to

manipulate information in the form of data and data structure. Thus

many of the inventions which have been granted protection and which

are device-like are really inventions which process information.

We can see just what the difference between a programmer’s view and a

European patent attorney’s view is by looking at the differences between

an EP application and a US patent. For example, the early EP application

EP0179350 (filed in 1985 by Wang)47 entitled ‘Data Processing System’

presented a combination of hardware and software (together with the

requisite diagrams showing that this was a device rather than software)

and was derived from a similar family of application to the US Office

including US 4,713,754 (‘Data structure for a document processing

system’) whose abstract outlined what was the underlying (but hidden)

software invention in the EP application:

A data structure for use in a document processing system corresponds to a docu-
ment comprised of one or more Pages. Each Page is subdivided into one or more
non overlapping Areas, each Area in turn being comprised of one or more types of
Layers. Each Layer type is expressive of a particular type of information such as
text or graphics information. Different Layer types may be superimposed to
comprise the contents of an Area.

The patent attorney can be seen here to be trying to mould a software

invention into a European-style format which the then new Vicom deci-

sion required – a situation which occurs frequently, when the attorney is

given the opportunity to do so (rather than simply acting as a post-box for

the European applications). The original was the invention of a data

structure to handle word processing documents, but this became a

mangled device-like entity by the time it reached the European Office.

The programmer’s view was hidden behind an engineer’s notion of

‘technical’. This was published in 1986 – so the practice of moulding

software into hardware form has been obvious for twenty years or more,

and the examiners would hardly fail to have noted from the patent family

that the inventive aspect of the application, if any, was software.

47 This was withdrawn on 1 July 1988. Examination dossier was destroyed 22 June 1993.

Algorithms, business methods and other computing ogres 153

Unfortunately – or fortunately, depending upon one’s view on the

desirability of software patents as such – it has been easier to exclude

programs which inventively handle information than those which imple-

ment business methods. This has particularly been the case in the UK

where, as Lloyd has suggested:

In general, applications relating to software have fared less well before the UK
courts. In more than half of the cases brought before the European Patent Office
Board of Appeal, applications have been declared patentable. Of six reported
cases brought before the UK authorities in only [Gales Application] was an appli-
cation declared to constitute patentable subject matter, a determination at first
instance, which was reversed before the Court of Appeal.48

We continue in a position where the programmer’s inventivity is pro-

tectable, but only when it is conceived to have been developed by some-

one other than a programmer – the person ‘skilled in the art’ cannot, in

the current situation, be a ‘mere data processing expert’. The program-

mer does not really care whether the data structures and algorithms he is

working with actually change data and information or change the physical

state of a machine. They are all, in terms of programming, simply manipu-

lations of virtual objects. As Judge Newman pointed out in her dissent in

In re Schrader:49

The majority now imposes fresh uncertainty on the sorts of inventions that will
meet the majority’s requirements. All mathematical algorithms transform data,
and thus serve as a process to convert initial conditions or inputs into solutions or
outputs, through transformation of information. Data representing bid prices for
parcels of land do not differ, in section 101 substance, from data representing
electrocardiogram signals (Arrhythmia) or parameters in a process for curing
rubber (Diehr). All of these processes are employed in technologically useful arts.

Newman is correct in her assertion that that data representing financial

objects is no different from electrical signals. But, tied in to the thinking of

Board of Appeal 3.5.1 in Vicom, no-one in Europe appears to be able to

dig themselves out of the logical hole which is the conclusion of Vicom’s

technical effect approach.

Conclusion

There is a realisation amongst commentators that a logical contradiction

exists. Unfortunately, the political will which appears necessary to resolve

48 I. J. Lloyd, Information Technology Law, 4th edn (Oxford: Oxford University Press, 2004)
p. 410.

49 In re Schrader 22 F.3d 290, 30 USPQ2d 1455.

154 Software and Patents in Europe

this contradiction in the system is now missing. The highly effective oppo-

sition to the CII Directive through the collaboration of the open source and

SME groupings has essentially made it politically difficult to move forward.

The opponents to software patents have suggested that this is a welcome

position to have arrived at: that Europe has been saved from the dangers of

software patents. This does not appear to me to be true: business method

patents have become easier to gain than traditional (more deserving, it

might be thought) software inventions, and even these latter can gain some

measure of protection through being re-constructed as device. The result

of the CII Directive debate has perhaps been a victory of form over sub-

stance for the opponents of software patents.

The success of the software opponents has been a matter of form rather

than substance because it has not stopped any patenting of software

applications which would in any event have moved to grant. It may even

have reinforced the view that the safest way for patent offices to continue is

with the well-tried technical contribution approach, despite the conceptual

confusion which surrounds it. In the view of this author this is undesirable,

first because there can be no advantage in having a patent system which

encourages conceptual confusion, and, second, because it enables a more

problematic entity (business methods) to be more easily protected than it

does a properly technical field such as computer science.

Clearly, however, the opponents do have a strong case in objecting to

protection, but the case is really one which is best made against the

workings of the patent system as a whole, particularly in the way in

which it affects the small enterprise. All agree that SMEs find problems

with the system,50 not just with software. It may therefore take a more

radical approach to the system as a whole – or the environment in which

SMEs operate – before opponents feel at all happy about even the cur-

rently available protections. There will always be opposition to the intro-

duction of intellectual property rights: it is only those with poor

intellectual eyesight who see that IPRs are always only of benefit and

never of detriment. But those who are seeking a world where ‘small is

beautiful’ are, I think, destined to fail.

What of the future? We look at this in the final chapter and assess whether

it will be possible to build a patent system which views the ‘mere data

processing person’ as someone capable of producing inventions on his own.

50 And not just SMEs – D. Crouch, in his Patently-O Blog (http://www.patentlyo.com/
patent/2006/12/women_as_patent.html) notes that women are not being encouraged to
innovate through the patent system either. A lively debate issued on the Comment facility
of Crouch’s blog. Women are well represented in computer science: is it conceivable that
software patenting would increase the proportion of patents awarded to women
inventors?

Algorithms, business methods and other computing ogres 155

6 The third way: between patent and copyright?

The patent system is essentially weak and vulnerable even in the more indus-
trialised of modern societies, but it does confer some advantages, as we have
shown, and it is an important protection for the small firm and the small man.
On balance it is a valuable institution, but its economic value overall is quite
modest, and it is desirable that extravagant claims should not be made on its
behalf.1

Introduction

The thrust of this text has been a mild defence of software patenting,

primarily suggesting that:
* A new technology should be viewed as a technology on its own merits

rather than via the legal fiction that it is something else.
* If invention in technology is to be protected as a social good, then why

should invention in software technology not be so similarly protected? It

is surely as difficult to invent in the programmed sphere as in any other.
* Arising from a form of ‘technological determinism’,2 even if we are

against software protection, there is – in the longer term – little which

can be done to prevent it: since even if one does not agree with the pro-

patenting perspective the fact that the malleability of software and its

ability to undertake a ‘machine-like’ transformation in parallel to its

taking over the role of the machine task (that is, from analogue control

to digital control) quickly meant that it was near impossible (in terms of

overall coherence of the system) to prevent patent applications from

dressing themselves in the required format and gaining protection.

The mildness of this defence, however, is due to the inherent weakness of

the patent model itself. In some fields such as pharmaceuticals it is

1 C. T. Taylor and Z. A. Silberston, The Economic Impact of the Patent System: A Study of the
British Experience (Cambridge: Cambridge University Press, 1973), p. 365.

2 It is not, of course, actually technological determinism because so much of the force being
applied is the social and economic pressures from vested interests.

156

probably essential, but in the software field it is not entirely proven that

social benefit requires an expensive system of monopoly to defend what

may well be a very minor technical advantage or that the system operates

in any more rational manner than that of a lottery. Neither is it clear that a

well-formulated set of software claims is particularly difficult to work

around – unless the examiner has allowed patenting of the problem rather

than one solution. Many analysts of the system have evidenced a similarly

near-neutral feeling towards it – Taylor and Silberston’s quotation at the

head of this chapter summing up a general sentiment that it is useful, but

by no means as useful as its most zealous proponents suggest.

Given, then, the lack of clear evidence that the patent regime is the

most perfect system for achieving the desired goals with respect to the

protection of software, is there another strategy which might be used to

target these goals and which keeps both the open source community and

many commercial developers happy? In the unlikely event that we were

given a blank canvas and support from the various interests involved in

the patent system and in software production, is there a ‘third way’

between patent and copyright, perhaps, which might produce the perfect

system? Or, more realistically, at least produce a better and more appro-

priate system for software? Even if we were the strongest defender of the

patent system, it is difficult to suggest that the system could not be

improved in order to cope with the needs of this new technological

artefact. For example, we have already noted that there are problems in

the patent protection of software – the nature of what it is in software that

we are protecting, for example, remains unclear: is it Moor’s ‘theory’,

‘model’ or ‘code’ or all three of them which protection is to cover?3

Copyright protection of software, too, could certainly be clarified to

cope with its new field of application. It has been the mainstay of program

protection for two or three decades, and has, through TRIPS, become the

internationally agreed form of protection for software; but there are many

reasons why we might not protect all elements of a program through the

copyright system – such as the core ‘look and feel’ of programs – since the

regime has such a low level of creativity which has to be overcome and too

much copyright protection of the non-literal may be over-protection.

Indeed, in the UK which is out of step with many other European

jurisdictions there is no requirement for creativity at all, simply original-

ity. However, this does not mean that a program does not need copyright

protection at all: the costs of copying others’ digital versions vis-à-vis the

production and development costs of manufacturing original products

3 J. H. Moor, ‘Three Myths of Computer Science’, British Journal for the Philosophy of Science
29(3) (1978), 213–22.

The third way: between patent and copyright? 157

are so divergent that few would argue that protection from literal copying

is not required. Many non-digital products are protected simply by the fact

that expensive manufacturing plant is required, and this plant’s existence

will be known to rights holders – historically, for example, the automotive

industry would only seek patent protection in those countries where there

was an automotive industry4 rather than in all those countries where the

produce is sold. This is certainly not the case with digital products, where

mass copying requires only the most basic of equipment and resources.

With these products, the right to prohibit direct copying through copyright

provides a strong legal, if not necessarily enforceable,5 protection.

Though few would argue that clear, literal, commercial copying of

software should not be an infringing act, copyright offers more subtle

and complex protections than just literal protection. Yet the limits of

these remain unclear when we move away from literary works. For

example, whereas the expression is the main focus of protection, the

closer that the idea becomes to that expression then the more confused

becomes what is the protectable subject matter. As Hand pointed out,6

there is no mechanism which allows a clear division between idea and

expression and the location of each on continuum must be found through

analysis of the fact situation. This task is no easier when it comes to

software. In Chapter 2, for example, we saw that there are conceptual

problems related to the notion of idea and expression which arise when

copyright is used to protect software and the courts themselves have been

unclear about what is expression and what is idea.7

4 The move of manufacturing across to the Far East is changing this situation: counterfeit
goods can be produced outwith the direct view of the rights owners. See the International
AntiCounterfeiting Coalition at http://www.iacc.org for the anti-piracy view.
Organisations such as this have been quick to rework their rhetoric and to point to links
between terrorists/organised crime and theft of their property rights: ‘On February 28,
2003, Mohamad Hammoud was sentenced to 155 years in prison for helping to lead a
cigarette smuggling operation that sent money to Hezbollah.’ See http://www.iacc.org/
resources/facts_on_fakes.pdf. The goal is to pass the costs of enforcement over to the state
by emphasising the criminal/terrorist act rather than the civil infringement. Of related
interest is R v. Johnstone [2003] UKHL 28 and the use of trademarks in bootlegging
operations.

5 My first question to intellectual property students is always to ask whether they have a
right in the UK to make backups of their music collection or transfer this to other formats
such as MP3 – many still errantly believe they do. This was raised in the Gowers Review of
Intellectual Property, suggesting that rights which can’t seemingly be enforced should be
changed (http://www.hm-treasury.gov.uk/media/583/91/pbr06_gowers_report_755.pdf).

6 ‘Upon any work . . . a great number of patterns of increasing generality will fit equally well,
as more and more of the incident is left out.’ Nichols v. Universal Pictures Corp., 45 F.2d (2d
Cir. 1930) at 121.

7 A good historical overview of the development and changing view of idea/expression in US
law is found in E. Samuels, ‘The Idea-Expression Dichotomy In Copyright Law’, Tenn. L.
Rev. 56 (1989), 321. His argument is that software caused a change from a bias towards

158 Software and Patents in Europe

The lack of clarity of where the unprotectable idea lies in software

is one perceived problem with copyright in software. Another is that

copyright is a form of protection which many would argue is best suited

for literary rather than functional artefacts – as many critics of copyright

software protection have pointed out, few people buy software in order

to read it or to look upon its aesthetic qualities and, even when it is

made commercially available, it is usually in the form of object code

which makes it much less readable and even less aesthetically pleasing.

Those who do purchase software, do so for what it does: that is, its

functionality, the protection of which has never been a core aim of copy-

right. There are other problems which we did not investigate in Chapter 2

which also arise from the copyright system: the ‘spare parts’ problem

where one may wish to make similar kinds of alterations or additions to a

program that one might make to a purchased machine, but cannot due to

copyright and reverse engineering prohibitions.8 In effect, copyright pro-

tection has been formally given to computer programs, but the nature of

software has meant that, in important ways, there are differences in

protection between a literary or artistic work and software – primarily

where there is a conflict with the functionality of software as in, for

example, the exemption of programming languages from copyright

protection.9

The conclusion which we might draw – indeed, that critics have drawn –

is that software is not best suited to either patent or copyright protections.

presumption of there being an ‘idea’ towards presumption of ‘expression’ and that: ‘A
survey of the history of the idea-expression dichotomy and a comparison with the appli-
cation and policies of related doctrines suggest that the idea-expression dichotomy simply
does not work very well as a categorical test of copyrightability.’ An earlier critical
perspective is that of S. Beyer, ‘The Uneasy Case for Copyright: a study of copyright in
books, photocopies and computer programs’, Harvard Law Review 84 (1971), 291. An
even earlier investigation of the nature of protection for ‘literary’ work is S. Lichtenstein,
‘Study of the term ‘‘Writings’’ in the Copyright Clause of the Constitution’, N.Y.U.L.R.
31 (1956), 1263.

8 There is no common European approach to this (though it is currently more design than
copyright oriented) but we can see the kinds of problems from the US in the interesting
Lexmark International, Inc. v. Static Control Components, Inc. Civ. Act. No. 02-571-KSF
(E. D. Kentucky, 27 February 2003) where Lexmark tried to ensure users were able to use
only the company’s own toner cartridges by including a program on a chip on the
cartridge. Only Lexmark cartridges would thus work with the printer. Judgement was
originally for Lexmark arrived at under protection by ‘technological measure’ that ‘con-
trols access’ to a copyrighted work. This was overruled in Lexmark International, Inc. v.
Static Control Components, Inc. 387 F.3d 522, 72 U.S.P.Q.2d (BNA) 1839 (6th Cir. 2004).
Europe is currently considering a proposal for a Directive Amending Directive 98/71/EC
on the Legal Protection of Designs, COM(2004) 582 final, 2004/0203 (COD). Although
directed at the automotive industry, the language appears to also potentially cover soft-
ware ‘design’.

9 Discussed in Chapter 2.

The third way: between patent and copyright? 159

Given these views of the limitations of patent and copyright protection

for software, proponents have thus argued that we need ‘new thinking’ – a

form of protection which might give one or more of:

(a) the protection of program functionality which is currently offered by

the patent system but in a more software-suitable form;

(b) literal protection from the copyright regime;

(c) protection of new developments which may not fit notions of ‘inven-

tion’ but which are new and useful.

Such a form of new protection is difficult to imagine and there have, in

fact, been very few proposals which have been taken at all seriously,

although there has been a variety of proposals which entail some tinkering

with the patent system as it stands. For example, Cohen suggested that

since – in his view – software is twofold in type (operating system and

applications program), then due to the special network effect of the

former, it should not receive full patent protection, but instead a sui

generis form should be provided which is ‘limited only to those software

platform components which create compatibility (e.g. APIs)’.10

In this chapter, though, there is no attempt at a taxonomy of proposals

and we will look at three of the many prominent schemes, and consider

whether they do offer the claimed advantages over the present patent

system, with its warts and all.

The ‘Manifesto’

The patent system is based upon the supposition that technical advance is

the most important element in the marketplace and that such advance

will be rewarded with commercial advantage of some sort – for example,

licence income or ‘space’ in which to operate. It is anecdotally clear that

this is not always the case: there have been many advances which have not

been successful for a variety of reasons, such as reluctance to change (as

Grace Hopper pointed out11). It is clear that, in the world of software, one

important reason for non-success in the computer area is because of

network effects, yet the patent system pays little heed to this important

element of the marketplace, concentrating instead upon the notion that

10 S. A. Cohen, ‘To Innovate or Not to Innovate, That is the Question: The Functions,
Failures, and Foibles of the Reward Function Theory of Patent Law in Relation to
Computer Software Platforms’, Mich. Telecomm. Tech. L. Rev. 5 (1999), 1. As with
other similar approaches, the rationale for the amendments comes from the asserted
failure of the patent system to properly fulfill its economic ‘reward’ functions.

11 See Chapter 1: ‘It was a selling job to get people to try it. I think with any new idea,
because people are allergic to change, you have to get out and sell the idea.’

160 Software and Patents in Europe

technical advance and invention are primary. In fact, the patent system

pays almost no attention to the marketplace at all.12

One proposal – A Manifesto concerning the legal protection of computer

programs13 – attempted to reverse this traditional perspective and look at

the protection of software with a much more market-oriented approach.

The Manifesto was published in 1994 and although it is historical – in

terms of protection having moved on in the past decade or so – its authors

still appear to support this as a potentially substantive advance in useful

protection.14 At that date patent protection for software was available to

those who knew how to compose the required claims, but much more

important was the then recent US copyright litigation, which had focused

on the ‘look and feel’ of programs where innovative developers attempted

to protect their investment from those who copied without incurring the

research and development costs – that is, producers in the ‘clone’ market.

The Manifesto is thus primarily a response to the failure – as perceived –

of the copyright system, but also critically appraises the patent system as

failing the marketplace, too. For example, the authors suggest that ‘[n]o-

one should have even a short-term monopoly for being the first to think of

‘‘computerizing’’ certain functions’ – a recipe which would certainly

undermine any possibility of patenting business methods (the patent

example they cite is US5,105,184, which is clearly a business method

based on advertising techniques rather than traditional computer science –

‘Methods for displaying and integrating commercial advertisements with

computer software’15). More generally, they take the view that patents

12 In Europe commercial success is dealt with more critically than in the US: ‘In T 478/91
too, commercial success was not regarded as indicative of inventive step. The board
pointed out that it was well known that the commercial success of a product could just as
easily be due to factors other than its properties, in particular more streamlined manu-
facture, a market monopoly, advertising campaigns or efficient selling technique (see
T 270/84, T 257/91, T 712/92)’, Case Law of the Boards of Appeal of the European Patent
Office, 4th edn, Legal Research Service for the Boards of Appeal, December 2001, p. 137.
See also the more recent T1212/01.

13 P. Samuelson, R. Davis, M. D. Kapor and J. H. Reichman, ‘A Manifesto concerning the
legal protection of computer programs’, Columbia L. Rev. 94 (1994), 2308. The
approach has been called ‘Radical Revisionism’ – see J. B. Hawkins, Book Review,
Harvard J. of Law and Technology 9(1) (1996).

14 See, e.g., P. Samuelson, ‘Mapping The Digital Public Domain: Threats And
Opportunities’, Law & Contemp. Probs. 66 (2003), 147: ‘In addition, I have endorsed a
short term of anti-cloning protection for industrial compilations of applied industrial
know-how. Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of
Computer Programs . . . ’

15 This patent offers a highly market-oriented approach and appears – to this author – to fit
well with the Manifesto proposal – perhaps innovative but not particularly inventive. The
patent was granted 1992, and contains one claim: ‘A small to a full screen commercial
advertisement is to be integrated with different types of screens generated by a computer

The third way: between patent and copyright? 161

aim for the wrong target – that they protect ‘methods for achieving

results’ rather than the results themselves. Is this the first step towards a

radical, revisionist approach? Methods of manufacture are intrinsic to

patents and a criticism and replacement of a methods-based approach

would involve a substantial step away from patent protection.

The Manifesto argues that programs are different from other technol-

ogies and that any protection should take that difference into account.

The Manifesto takes a computer science-oriented approach, arguing that

it is not so much the text of the program which is important but that the

program is a type of virtual machine which is organised upon a variety of

conceptual metaphors, much as outlined in earlier chapters in this text.

Along with the critics from the open source movement, the Manifesto

argues that programs are incremental and cumulative in character – that

is, that often the most important aspects of a program are below the level

required for the inventive height hurdle of the patent system. Unlike the

open source community which prefers no protection for such improve-

ments, the Manifesto suggests that this is a form of under-protection and

requires to be remedied. The Manifesto argues that the litigation which

was seen over ‘look and feel’ where developers attempted to protect their

investment was a sign of a deeper problem – that the existing protections

available did not protect what was really valuable in software.

The value of software, the Manifesto authors claim, is in its behaviour

rather than the text: ‘[b]ehaviour is not the only source of value in a

program, but it is the most important . . . when buying software in the

retail market, consumers buy behaviour and nothing more.’16 Since it is

the behaviour which is valuable, then the Manifesto suggests that behav-

iour is where protection should be focused.

Many commentators would agree with the Manifesto that it is certainly

the behaviour of programs which is important. However, focusing on this,

the Manifesto implies, requires a new way of protecting software. In

effect, what this new protection – which is to replace copyright and patent –

would protect, is a program from being cloned. Cloning a program means,

to the Manifesto authors, taking the valuable element of a program with-

out being required to undertake the effort and design involved in suc-

cessful software development. It is, in this view, ‘free piggybacking’ and

software; and such commercial advertisement is to be integrated by modifying and/or
inserting in a data entry, user interface, menu, prompt, help, edit, report, maintenance,
error, action, game, sign on and off, and/or other similar screens in such software,
wherein said small to a full screen commercial advertisement is to be placed in the
different parts of a computer software so that such commercial advertisement becomes
an integral part of such software, and yet does not interfere with or alter the original
function of such software, and is not necessary for the computer software to function.’

16 P. 2318.

162 Software and Patents in Europe

thus undesirable, since unlike the more traditional marketing technique

of ‘piggybacking’,17 it is done without the agreement of the partner.

Cloning software is problematic because the innovations in software

which make it valuable in the marketplace are, to the Manifesto, highly

vulnerable because they ‘lie on the surface’ of the product and are easy to

view. In effect, it is because software differs from other products by

making the acquisition of the value in the program easy that cloning

protection becomes necessary:

Because software bears the bulk of its know-how on or near the surface of the
product, it is more vulnerable than traditional industrial products have been to
trivial acquisitions of behavioural equivalence.18

Cloning, in industrial products, is hardly controversial: reverse engineer-

ing a rival product to utilise elements which are not protected is the day-

to-day business of a research and development department.19 Trade

secret law has developed as a means to regulate what is permissible

behaviour – that is, if the information can be seen then it is not protect-

able.20 Yet, in the Manifesto, it becomes an activity which is seen as

highly problematic. This view arises from the perception that it is too

easy to extract the value from a software product and therefore it is the

source of market-destructive effects: if the cost of innovation is substan-

tial enough, then it cannot (as a tactic) survive the onslaught from copying

of the valuable behaviour of the program. But the Manifesto suggests that

cloning is not, however, something which should be totally halted, since

there can be occasions when it benefits the market to have such copying.

Rather, ‘[i]nstead of trying to stop dependent creation in software, the

law should regulate how rapidly certain kinds of dependently created

products can be introduced to the market and under what terms.’21

17 ‘Whether you are a mature company trying to break into a new market or a new company
just trying to break ground, co-marketing can help you capture market share on a shoe-
string. By piggybacking on the strength and positive associations of a partner’s brand,
startups can get their first, much-needed shot of validation. Companies that are more
established can leverage the brand and market reach of a partner to help them very
quickly pick up the credibility and awareness needed to play in new market segments.’
Businessleader.com 14(1) (2002).

18 P. 2337.
19 Henry Ford wrote in 1922: ‘We study every car in order to discover if it has features that

might be developed and adapted. If any one has anything better than we have we want to
know it, and for that reason we buy one of every new car that comes out. Usually the car is
used for a while, put through a road text, taken apart, and studied as to how and of what
everything is made.’ H. Ford, My Life and Work (Whitefish, MT: Kessinger Publishing,
2003), pp 145–6.

20 Thus, broadly, so long as there has been no breach of confidence from someone with
know-how, reverse engineering is allowable.

21 P. 2380.

The third way: between patent and copyright? 163

Thus the new protection focuses on extent of cloning and length of

protection from cloning, suggesting that a legal regime should be con-

structed which essentially gives developers a protected ‘lead time’ in

which they can take innovative products to market without fear of their

innovations appearing in rival software.

It is at this point that things become more confused, since, as the

authors suggest, there is a wide variety of cloning behaviours which

range from a direct duplication of code, through exact replicas of behav-

iour, partial replicas, and even such elements as add-on programs, where

developers produce interacting programs which feed off the behaviour of

the original. That this latter should be deemed potentially contributing to

market failure is because ‘one can argue, from a market-oriented stand-

point, that the developer of an add-on-program builds on the underlying

developer’s research and development and should not be entirely exempt

from contributions to these costs’.22 A critic might suggest that it will be

as difficult to determine cloning as it is to determine inventive height or

where on the idea/expression continuum this lies, but the authors think

that: ‘[a]n anti-cloning standard would also be more predictable than a

substantial similarity standard. Innovators, imitators, and courts can all

be expected to recognize near-clones without much difficulty.’23

An underlying idea of the Manifesto is the work of Reichman (one of

the authors), who has argued that what is important about programs is

that they are ‘know-how’ rather than product or textual product.24 Such

an assumption implies that what is really important to the program

developer would be best protected through some form of trade secret

protection, but the argument is that this know-how is difficult to protect

in programs, since their behaviour is surface oriented. Given that trade

secret protection is thus not appropriately available, Reichman argued

that ‘to protect interested parties against the misappropriation of unpa-

tentable know-how has thus become a crucial issue for world economic

development’.25 He also criticised ‘patent law’s total pre-occupation with

the ‘‘inventive step’’ . . .’26 The language of the Manifesto – as in large part

derived from Reichman’s perspective – demonstrates a claim not to be an

attempt to improve the patent system in order to handle software cor-

rectly, but to be a total denial of the utility of the patent system as a way to

protect what is really valuable in software.

22 P. 2405. 23 P. 2400.
24 See, e.g., J. H. Reichman, ‘Computer Programs As Applied Scientific Know-How:

Implications of copyright protection for commercialized university research’, Vanderbilt
Law Review 42(3) (1989), 639–723. He is critical of the commercialisation of university
work.

25 P. 662. 26 P. 651.

164 Software and Patents in Europe

The Manifesto suggests a shorter period of protection than that offered

by the patent system, but does not give a specific date. Beyond the term of

protection, the idea becomes public domain and, since it has been regis-

tered, offers the competition a means to browse and utilise no-longer-

protected innovations.

The Manifesto is a complex document but the above outline gives the

flavour of the approach. Innovation is seen to differ from invention. And

the ‘look and feel’, we might conclude it is being argued – being surface

behaviour and thus accessible to the purchaser – is more valuable in a

software product than a technique which offers, say, ease and cost effi-

ciency in program maintenance27 and which is not visible on the surface

of the product.

If the broad approach outlined by the authors is accepted, how might

this be transformed into a working system? They give three options:

1. The option of doing nothing is considered but is deemed that relying

upon patent and copyright regimes leads to more cloning (which is

viewed negatively) and, because of poor quality patents being granted,

to the impeding of competition.

2. Anti-cloning protection would provide artificial lead time for software

developers. This would be granted automatically and last only so long

as it gives lead time but not does impede others’ incremental develop-

ment or lead to de facto standards.

3. A registration system with some form of licensing for software mod-

elled on existing libraries of algorithms, so that potential users can

browse through a shelf of program ideas which might then be licensed

from the developer.

The Manifesto has been published and considered for some years now

and while there are certainly aspects which are interesting, there may be

flaws in the thinking which have become more obvious over the passing

years. We look next at the assumptions and also at the possible trans-

formation of the protection system, even at this late date.

Does the Manifesto offer improvement to the system?

There is no doubt that if the Manifesto was to be implemented then it

would be taken up by software developers as an extra means of protection

27 A technique of producing easy-to-maintain programs would be potentially worth very
many billions of euros given that maintenance is the most expensive part of program life.
It has been estimated that annual software maintenance cost in USA to be more than $70
billion. See, e.g., the review of literature on costs in J. Koskinen, ‘Software Maintenance
Costs’ (2003), online at http://www.cs.jyu.fi/ ~koskinen/smcosts.htm.

The third way: between patent and copyright? 165

for software – few are the forms of IP protection which have no users. But

the Manifesto is not an addendum to protection, but rather a replacement

and has to be judged on whether it offers significantly improved results

from both policy and pragmatic perspectives. Note that while the origin of

the proposed system arose from criticisms of copyright protection, it was

put forward as a replacement to patentability and can therefore be judged

according to patent criteria. In order to determine whether there is an

improvement offered, it is necessary to investigate the primary assump-

tions which the Manifesto authors cite and claim makes software and

patent incompatible.

Is software really different?

The authors put forward the idea that there is something new about the

technology of software which makes it different from previous technolo-

gies. That is certainly true – the steam engine was different from horse-

harnessing technology, and it surely involved new ways to think about

technology. For example, it required a different system of support –

foundry, machine tool industry, coal mining technology (to which it

contributed), etc. – which meant that it became part of a larger industrial

complex and a forerunner of the complexity of the industrialised software

industry we find today. However, software goes beyond these differences

and its own particular divergence is that – as we have discussed – it melds

together the physical and the virtual. The Manifesto focus on the differ-

ence between the text of a program and the functionality simply confuses

us: it mixes up the description/implementation and the functionality in

the same way that, for example, a combination of drawing/rods, nuts and

bolts etc. is different from the functionality of the combination. Of course

it is – one is visual description and atomic makeup of the device, while the

other is the device in operation. If we are aware of that, then we can view

each as simply providing a different window upon the same artefact,

rather than saying that because we have different windows through

which we view it, there is no single artefact. The problem is in the view,

not in the device.

In some ways, however, the authors are correct in seeing that there is a

perceived difference between the text of a program and its behaviour. We

can note that judicial reasoning has lacked this latter clarity of what the

view is: they have been railroaded into a copyright perspective by that

form of protection and – as would have been argued by Wittgenstein –

their vocabulary has affected their understanding. But that does not mean

that we need to follow this incorrect judicial visualisation and suggest that

it is anything more than a legal fiction.

166 Software and Patents in Europe

Dealing with software as behaviour, we can thus see that there is really

little difference between, on one hand, software as product and, on the

other, machine/compound as product. Both show their externalised

behaviour for very little effort. And it is, in all these products, the behav-

iour which is of commercial value, not the atomic sub-parts.

What is so special about being cumulative and incremental?

The Manifesto author’s view of software development is that it occurs as

small-scale improvements rather than involving great inventive leaps. In

fact, this ties in very closely with a commonly held view of the patent

system: i.e. that it rewards developments which are incremental and

cumulative. This is certainly a well-agreed view of the system by many

neutral observers and many non-neutral ones, too. Perhaps the patent

system and software are well matched?

Of course, the rhetoric of the patent system is that it rewards ‘inven-

tion’, but this depends upon the level of inventive step set by office

and court. It may be that, if the level were raised, there would be a large

number of developments in software which would lie beneath

that hurdle, but this would require policy justification that protection

should be offered to these low-level advances, which is certainly implied

in the Manifesto but there is insufficient evidence for such a major

replacement to the patent system. Some countries already have a

collaborating (‘second tier’) element which might handle such advances

(the petty patent system which we look at below), so it may not

require the denial of patentability to handle the developments which

the Manifesto authors see as being below the hurdle of patent

protection.

Isn’t everything protected by patent a behavioural form?

The focus on copyright and the lack of US judicial desire to protect ‘look

and feel’ to the level which the authors suggest is necessary, leads to an

implication that software with its ‘behaviour’ is different from other

products which might be protected. This is difficult to follow: all chemical

processes, products, ways of manufacturing etc. are protectable and they

all are defined by behaviour. It is the ‘idea’ in the patent which is the

object of protection and there is no reason why that idea cannot include

behaviour. Given that technology is the applied use of knowledge, then

surely (if correctly examined) all patent specifications evidence applied

behaviour.

The third way: between patent and copyright? 167

Is cloning really problematic? Add-ons?

The Manifesto authors were struck by an event when the graphical user

interface which was developed at Palo Alto by Xerox was taken by Apple

after a visit to the former research facility. This may be the origin of their

view that software is amenable to easy theft of surface behaviour and that

anti-cloning behaviour was not protectable and should have been.

However, there is another reading of this event which casts a different

light upon it. That is that Xerox were under anti-trust observation by the

Federal Trade Commission and were required to open their patent folio

to competitors with very low cost licenses. This is the argument which

Gregory Aharonian has put, suggesting: ‘It isn’t surprising then that in the

late 1970’s, Xerox employees were law or unprepared in dealing with

closely protecting Xerox intellectual property like the GUI interface. Why

bother to protect the apparently unprotectable?’28

Anti-cloning is central to the Manifesto, but given its centrality there is

really little justification as to why it is so wrong: where is the empirical

evidence on actual lost lead time, or the period required to produce a rival

product in the marketplace, etc.? The reader might almost conclude that

there is a moral rather than an economic argument being made against

cloning. Such a stance may be entirely justifiable – though it may be

morally repugnant – but does not fully take into account how judicial

development of anti-cloning rights might move protection in unwar-

ranted ways. That is, that when we suggest new rights, we need also to

think about possible negative developments which may accrue from

these. The critical reader would note that legal protection of domain

names has effectively expanded quite considerably the nature of trade

mark rights – what effect might the legal right of software cloning have on

other related rights such as machine development? If software is pro-

tected from sub-inventive patenting, then surely (the argument will run)

other non-digital products should also be protected.

The short discussion of ‘add-on’ interacting programs, too, suggests a

very much more extensive system of rights than allowable by patent: if a

program developer is enabled to halt interaction of other programs with

his own program, it gives a huge licensing opportunity to the winner of the

first to gain the network effect. The Manifesto authors appear to be

28 G. Aharonian, Patnews, 22 April 1996. The critique cites PTO Official Gazette, 4
November 1980 and its listing of some 6,000 patents which were to be offered.
Aharonian is pro-patent but critical of poor prior art searching, offering a service in this
field. See http://www.iplaw-quality.com/. See M. Hiltzik, Dealers of Lightning: Xerox
PARC and the Dawn of the Computer Age (London: Orion Business Books, 2000) Ch. 23,
for a journalistic view of the visit.

168 Software and Patents in Europe

setting up a system much like rampant capitalism, where the winner takes

all, rather than a system which rationally applies reward in a balanced

form.

Clarity of predictability of anti-cloning?

The Manifesto suggests that it should be easy: ‘Innovators, imitators, and

courts can all be expected to recognize near-clones without much diffi-

culty.’ As the study of law in practice has demonstrated, in the face of

litigation – as the court door beckons – there develops less and less

confidence in one’s case. One might suggest that a similar falling off in

confidence level will be found in recognising ‘near-clones’ as the court

doors near, especially since it is not clear how that might be defined as a

legal concept.

Registration – isn’t this just the patent system again?

Finally, we are left with a feeling that the Manifesto is really not as radical

as its title suggests. It does not offer any radicalised new version of

protection at all – it has very much in common with the petty patent

approaches which are looking to protect sub-inventions seen as commer-

cially valuable but not inventive. The registration process which is sug-

gested by the Manifesto appears to follow the petty patent model very

well, as we see below.

If we approach the Manifesto not as a total denial of the patent system,

but as an attempt to bring in an extra level of sub-patent protection for

innovation, then we can see that it could make sense and – if linked to the

policy reasons which underlie petty patents – has a ready-made justifica-

tion, even if it is one which the authors did not utilise.

A Software Petite Patent Act

The second of the revisionist models is that of Mark Paley,29 and this is

perhaps a proposal which has met with more positive responses from the

patent community and also, because of its emphasis upon protection for

only commercial software, appears to offer some respite to the open

source community. It is also a model which more explicitly connects

into the already existing utility/petty patent type of protection which is

reasonably well known in Europe.

29 M. A. Paley, ‘A Model Software Petite Patent Act’, Computer & High Tech. L.J. 12
(1996), 301–19.

The third way: between patent and copyright? 169

The presumption of the Paley model is, once again, that there is either

overprotection or underproduction of software from the traditional copy-

right and patent regimes and there also exists confusion because software

falls between these two legal protections which ‘pull software apart to

protect it’30 and thus, for example, ‘courts are split on how to protect the

way a program interacts with a user’.31 Paley echoes some of the early

judgments which called out for Congress to devise a new form of protec-

tion, more appropriate for this new technology. Paley, however, is also

concerned with the wider international perspective, arguing that although

TRIPS is supposed to provide worldwide copyright protection, in fact,

opposition to enforcing it in many countries has left software (and US

software in particular) unprotected. A new form of protection – that

proposed by Paley – would provide ‘a better solution by providing lesser-

developed countries . . . a real incentive for software protection . . .’32

The criticisms that Paley makes are the common ones; that, for example,

algorithms were not well protected by the patent system, as indicated

by the confused reasoning which eventually ended with Alapatt33 and

‘[r]egular patents simply do not fit the basic nature of algorithms and

software’. Mostly, he argues, the cause is due to trying to fit software

concepts under the rubric of process or machine. And, if concepts could

be better defined by statute, the term of protection is still too long for an

artefact which ‘far exceeds the useful life span of many software and many

algorithms’.34 On the litigational front, he also suggests that small firms

find it hard to win patent cases against large infringers:35

[s]oftware CEOs say it is easy to get a software patent, but hard to enforce it
without a protracted, costly legal battle, and the U.S. Supreme Court has never
sided with the patent holder. A small company with limited resources can be
defeated long before the trial date by a large company that strategically makes
litigation expensive and time-consuming through delaying discovery and
motions. A small company unable to continue litigation may be forced to settle
on unfavourable terms.36

It is thus the more traditional criticisms which underpin Paley’s thinking.

The Manifesto argued that the primary problem arises from trying to

protect ‘inventions’ rather than behaviours and that the solution is in

protecting what the market sees as valuable. This is not the view that

Paley takes – rather, he appears to suggest that the patent system can be

revised to handle software more properly, without throwing out the whole

30 P. 305. 31 P. 305. 32 P. 312.
33 In re Alapatt, 33 F.3d 1526, 1540–41, 1545 (Fed. Cir. 1994). 34 P. 327.
35 This follows the policy criticisms dealt with earlier in Chapter 3. 36 P. 329.

170 Software and Patents in Europe

system. His model is based upon the following elements (with section

numbers referring to his proposed Act):37

Focus is on algorithm protection: x222(a) ‘Whoever invents an algorithm may obtain
a patent therefore.’ Why such an approach? Basically because Paley argues that
algorithms are essentially the same as those non-literal elements which are pro-
tected/non-protected by copyright and thus are the core element of software
which should be the focus of petty software patent protection.

Protection through compulsory/blanket licensing: x236(b) ‘Any person may obtain a
compulsory license to commercially exercise the granted rights of the patent,
unless such license would be contrary to the public interest.’ The Petty Patents
thus moves away from being a monopoly where the owner can stop the idea being
worked: the idea is still protected under Paley’s scheme, but as a property which
others can access on payment rather than as a full monopoly. The USPTO would
establish a ‘reasonable royalty’ system.

A reverse engineering right: x233(l) ‘A software patent shall not affect a user’s
right to learn the internal design of a program by studying and experimenting with
disassembled or decompiled portions of, or all of, the program code. Paley thus
takes an opposing view to the Manifesto, given that the latter viewed too close
investigation of others’ work as being detrimental to the marketplace.

Exhaustion of rights on first sale: Paley objects to the use of licensing (rather than
sale) to attempt to reduce the user’s rights through exhaustion at first sale.
Licensing conditions affecting resale are thus void.

‘Use’ to follow trade mark practice: To deny protection for software which
is promised (‘vapourware’) but not in the marketplace, only software which is
‘commercially developed’ will be protectable (x233(c)). The target of Paley is
the software developer who advertises software which is not yet available in order
to undermine competitors’ completed products.

Simple application filing (including listing): This application format follows the
traditional patent method requiring clear and complete disclosure and claims
containing technical features and a concise statement of what is being protected.
Listings of code will be part of the publication and registration scheme.

No examination: x225(a) ‘The Commissioner shall not examine the invention
until challenge has been made.’ This element follows on from having a simple
application system, and thus cuts the cost of application substantially.

Infringement findings based on abstraction, filtration and comparison: Though he
suggests that the model could be international, it is clearly based upon the judicial
thinking of the US.

No infringement for non-commercial software: x233(k) provides a defence of
‘Nonprofit, Noncommercial use’ to the taking of any protected idea.

Some of these ideas are indeed European in style, where the idea of petty

patents are well known and, as we see below, have already been proposed

as ways to support the small software developer in Europe.

37 Intended as amendment to US patent law in Title 35.

The third way: between patent and copyright? 171

Criticisms of Paley’s model

There are several elements of Paley’s model which require a critical

analysis in order to make a judgement about the value of this revised

form of protection:

Algorithms The assumption is that algorithms are what require

protection. This appears to be a lawyer’s view of computer science when –

as we have outlined earlier – software is really a virtual machine where

algorithms are important but not the only element worth protecting. The

patent system protects ideas and one may conclude that Paley’s model,

when it moves away from the protection of a technical idea, is offering a

significant under-protection, just the criticism he makes of the patent

system itself.

Compulsory licensing One of the advantages to commercial firms

of the monopoly from a patent is that it allows them to create a space

within which they can develop and manoeuvre. It is, to use the Manifesto

authors’ idea, a market-led approach. If innovators under the Paley

scheme have no right to exclude but only a right to receive what may be

nominal royalties, then those innovators may feel the protection is of little

real value. There are many examples of firms who do not use the patent

system for particular ideas because it makes too public their lines of

development: these would be the same firms who would see little use in

protection which advertised their wares but gave them no control over

who else was allowed to implement them.

Vapourware There always appears in these kinds of ‘model

schemes’ a moral judgement on behaviours and here Paley follows this

practice by attempting to outlaw (or, at least, reduce) what appears to be a

very normal practice. That is, enticing potential customers to wait for a

‘better system’. Whether the practice would be undermined by denying

protection only to systems at a state of commercial readiness appears

unlikely, given the value in the marketplace of upsetting a competitor’s

marketing strategy.

Examination It is easy to understand why examination is seen as

problematical and is omitted from the proposed Act, but no examination

may be even more problematical. We look at this below.

Non-commercial This aspect of Paley’s model is attractive to the

open source community, promising that developments which are not for

172 Software and Patents in Europe

sale would be outwith protection. Unfortunately, as we see from the

successful development of open source, what begins as a non-commercial

program may end up being integrated within a commercial system or sold

as a package with documentation and support. Is this latter commercial or

not? In the UK, the Patents Act 1977 (in s. 60(5)(a)) provides an

exception to infringement if the act ‘is done privately and for purposes

which are not commercial’, which is similar to Paley’s suggestion.

However, the courts have tended to view this in a limiting manner38

where an act carried out in private and non-commercially must not then

become part of a commercial act. This is essentially how the open source

community operates – a private development of code which then is used

by users in commercial situations – and would not be a non-infringing act.

Paley’s suggestion might therefore not be as useful to the open source

community as it first appears.

Paley’s model has much in common with a proposed European

Directive, and given that this is a more formalised option, we will look

at it now. Many of the criticisms of the directive, however, are applicable

to Paley’s proposed regime.

The proposed European Utility Model39

The Manifesto and Paley proposals have an underlying theme of desiring

protection for the smaller enterprise – protection of the small developer

against the likes of Microsoft, for example. We find that this same theme

of protection through lower-level protection has been a recent point of

interest for the European Commission, who have proposed a European

Utility Model.40 This protection scheme came about when the

Commission published – in 1997 – a proposal for the harmonisation of

utility model protection. Surprisingly, given the later attitude of the

Parliament, the MEPs suggested strengthening and extending the pro-

tection which the Commission had originally proposed to cover software.

As the explanatory memorandum to the revised proposal makes clear,

38 See Smith Kline & French Laboratories Ltd v. Evans Medical Ltd [1989] FSR 513.
39 This is based on P. Leith, ‘Utility Models and SMEs’ Journal of Information, Law and

Technology 2 (2000).
40 Recitals of the revised directive suggest: ‘(5) Whereas small and medium-sized firms play

a strategic role in relation to innovation and rapid response to market requirements; (6)
Whereas there is a need for placing at the disposal of firms, and in particular small and
medium-sized firms and researchers, an instrument which is cheap, rapid and easy to
evaluate and apply; whereas the fees should therefore be as reasonable as possible for
small firms, individual inventors and universities; (7) Whereas utility model protection is
better suited than patent protection to technical inventions involving a specific level of
inventiveness.’

The third way: between patent and copyright? 173

‘Parliament did not question the Commission’s approach and the main

features of the utility model as described in the original proposal were

retained’. Importantly, Parliament proposed extending the scope of the

directive to cover software. This was accepted by the Commission and

appeared in the revised proposal.41 It is clear that the European

Parliament were agreeable to SME-friendly arguments, since they sug-

gested that fees should be reduced by 50 per cent for small and medium-

sized firms, individual inventors and universities.42

There had been much discussion in the early 1990s concerning the

value and construction of ‘second tier protection’, since it became clear

that the Commission were interested in this and had been promising a

Green Paper on the topic. The worry that proposals from Germany’s

Max-Planck Institut required a UK counter led to the CIPA’s conference

at Brocket Hall in 1994.43 A common view in UK industry was that the

value of patents could be undermined by the free-flow of unexamined

utility models. The image of a ‘minefield’ was frequently cited as a

potential result of having easy access to protection, where these protec-

tions were hidden from view until they exploded in litigation under the

unsuspecting manufacturer. Such protection, rather than helping Europe

to revitalise innovation and development, could act as a barrier to inno-

vation, since firms would not wish to expend money and develop in fields

where the protections were unclear.

Protection under the directive would be towards inventions which were

‘industrial’44 but, rather than the technical fields covered being identical

to that of the EPC, there is an exclusion of protection for chemical

substances or processes.45 A brief outline of the proposal is:
* Protection would not be at the Community level, and utility models

would be national.
* There would be no common procedures for processing utility models

(e.g. setting up of opposition systems) and these will be left to national

governments to consider.

41 COM (1999) 309, 12 July 1999.
42 Though it is not clear how this idea would have been policed. It would not be difficult for

large enterprises to set up smaller, independent companies to control their utility model
portfolios. Whether universities – already funded significantly by the public purse –
should be further subsidised is a further question. This proposal was not accepted by
the Commission.

43 CIPA, Second Tier Protection: Report and Proceedings of a Symposium, 6–8th July (1994).
The Banks Committee had earlier rejected petty patenting. See M. A. L. Banks
(Chairman), The British Patent System: Report of the Committee to Examine the Patent
System and Patent Law (London: The Stationery Office, 1970), Cmnd. 4407.

44 Which includes agriculture – Art. 7(1).
45 These industries were unhappy with the idea of utility models. See Recital 13.

174 Software and Patents in Europe

* Protection would be for a maximum of ten years;
* Computer programs would be protectable.
* Not protectable would be: discoveries, scientific theories and mathe-

matical methods; aesthetic creations; schemes, rules and methods for

performing mental acts or doing business; presentations of informa-

tion;46 anything contrary to public policy or morality; biological mate-

rials; chemical or pharmaceutical substances or processes;47 surgical or

therapeutic treatment.48

* Inventions must not form part of the state of the art. Thus prior art

would not be geographically limited.
* There would be no grace period.
* Inventions will be considered to have an inventive step, if ‘it is not very

obvious to a person skilled in the art’.49

* Search examination will only be carried out on request (or in the event

of litigation) and there will be no formal examination of validity. Costs

of search may fall upon the non-holder.

In some ways, the general approach being taken was closer to that which

was being requested by UK proponents – particularly with regard to level

of inventive step.50 Essentially, this lowering of the hurdle for protection

is one which mirrors the Manifesto and Paley approaches – that some-

thing below the level of an invention should be protectable. Are there real

differences between these models and the European one with regard to

what is protectable? It is difficult to tell, since it would only be in the

procedural examination of the Manifesto and Paley schemes whereby one

could determine just what was actually being protected by the courts – my

reading is that there might indeed be quite a common feel to what is being

protected by all three systems.

No-one in the debate about protection had originally imagined a nation-

ally based system, this being unusual given that the Commission’s single-

market approach appeared to require a harmonised transnational

approach. But the problems which the Commission has been having

with cost of translation for the Community Patent may well have under-

mined any attempts to produce a Community-wide system. The directive

46 These – Art. 3(1a)–(1d) – are excepted ‘as such’ by Art. 3(2).
47 These are non-protectable by Art. 4.
48 These are not considered of industrial application under Art. 7.
49 The Max-Planck Institut suggested that an alternative requirement to that of obviousness

would be that the invention offers a ‘practical advantage’. The proposed directive has
included this and two requirements now exist – that of showing advantage and being not
very obvious.

50 See a 1995 view of the rival proposals in M. Llewelyn, ‘Proposals for the Introduction of a
Community Utility Model System: a UK Perspective’, Web JCLI 2 (1997).

The third way: between patent and copyright? 175

obviously hoped to overcome potential problems for the internal market

by imposing internal Community exhaustion of rights.51

For those involved in litigation there are strategic advantages which

arise from this form of protection – being able to claim infringement at an

early stage prior to patent grant, splitting off utility model applications

from patent applications for quicker protection, etc. As both a defensive

and offensive tool, therefore, there is much to recommend utility model

protection. Outside litigation, there are other reasons for considering

utility model protection. In Ireland, one advantage has been that tax relief

has been available on research at an earlier stage and at a lower inventive

level than that with the patent. And, in a commercial patent framework

where patent licences are sometimes exchanged and traded by size of

document pile rather than value of the claims, there is an advantage in

having more pieces of paper rather than fewer.

Thus, despite the concentration of debate upon the usefulness of the

utility model to the SME, it is unlikely that large businesses will not see

advantage in using these devices for the same tactical reasons that smaller

enterprises will. Indeed, there is no evidence that, in those countries

where utility model protection has been available, SMEs have been

their primary users. It therefore does not seem possible that the new

directive will encourage a situation where SME usage will be enhanced

and non-SME usage limited: we should expect larger enterprises to make

more use of utility model protection in the new environment because

these enterprises have more IP knowledge than the typical SME. It has

been suggested that one reason for the limited use of the utility model

protection in Germany, for example, by US and Japanese firms has been

the cost of translation. Those non-European firms who have been filing

European applications have been doing so in English, and have had no

inexpensive route towards Gebrauchsmuster protection. If the directive is

implemented, and the UK is required to provide protection, it will be a

relatively simple matter for those firms who file via the EPO and PCT

routes in English to prepare an English-language utility model at low cost

and file this as a UK utility model. Transnational filing is usually carried

out by larger firms, so a benefit will flow to them.

Another example52 of possible usage of the utility model is that a

company produced many more inventions than they would typically

wish to patent (due to expense, for example) but were always concerned

that if these ideas did not reach the public domain in some way, then they

might be protected by the competition. One current method of ensuring

51 Art. 21.
52 Given to the author by a patent attorney for a major computer manufacturer.

176 Software and Patents in Europe

that unwanted ideas become part of the prior art is to publish in the

journal Research Disclosure.53 For a modest fee, companies can put their

ideas into the public domain, free from future protection. Thus utility-

model protection may be as effective and cheap a method of stopping

competitors from protecting ideas, but also provide extra protection to

surround a patent portfolio. Such an option is particularly attractive to

the larger company with a large body of patents – rather than to the SME.

It is not just that the advantages which accrue to the SME can be used

by larger firms, but that to the SME utility models can be dangerous

devices. In Germany the German Patent Office has suggested that, while

the Gebrauchsmuster system is successful and has increased in application

and grant number, the unexamined nature means that holders must

exercise care in their use:

In competition, claiming this right may trigger off claims for damages against the
utility model owner by the alleged infringer. The utility model owner must be
extremely careful, and is personally responsible for taking into account and
appreciating the relevant state of the art as well as estimating inventiveness.54

The proposed directive (Art. 26) locates the legal framework for utility

model, insofar as it is not dealt with in the directive, as being that of

national patent legislation. This means that remedies for aggrieved par-

ties who have been recipients of groundless threats of proceedings in

patent matters will also be available for those receiving such threats of

proceedings in utility model matters.55 Since it is well understood that –

in the absence of professional advice – SMEs have particular problems in

reading claims and assessing the value of prior art, a simple system which

might encourage filing and accusations of infringement against compet-

itors by SMEs themselves, could produce negative effects upon business

health.

That there are difficulties with utility models is clear: they are not solely

SME-friendly, nor without danger. However, they are being granted in

ever increasing numbers and their dangers may sometimes be overstated.

They do offer a cheap and cheerful complement to full-term patenting

which has strategic, cost and convenience factors. Given a situation

53 Research Disclosure New York: Emsworth Design, Inc.
54 DPA, Annual Report (1995), p. 32.
55 Patents Act 1977, s. 70(1). ‘Where a person (whether or not the proprietor of, or entitled

to any right in, a patent) by circulars, advertisements or otherwise threatens another
person with proceedings for any infringement of a patent, a person aggrieved by the
threats (whether or not he is the person to whom the threats are made) may, subject to
subsection (4) below, bring proceedings in the Court against the person making the
threats, claiming any relief mentioned in subsection (3) below.’

The third way: between patent and copyright? 177

where reasonably well-known technical fields are being protected, there is

no reason to believe that anarchy will follow implementation of utility

model protection in those countries who do not have it.

Are software utility models problematical?

The situation becomes different when we consider protection of software

under the proposed directive. There has been no long-term development

of clear principles of the law of patent protection for software, and there is –

as we saw in Chapter 5 – the potential for considerable debate over the

results of the Technical Board of Appeal decisions with respect to the line

delineating what is and what is not protected. This means that we have an

area of law which is undergoing substantial development and discussion

and can certainly not be described as ‘clear’: yet, the directive on utility

models suggested opening this area to usage by SMEs, and doing so

without the support which would arise from proper examination of claims

and prior art.

In essence, it appears to this author that the problems which have

generally been highlighted as problematical in the granting of software

patents will be more so in the granting of utility model protection. These

are set out below.

Inventive step Setting levels of patent grant is one of the black arts

of the field, and one which, no matter how objective the attempt

(through, for example, tests of problem and solution), is always difficult

to decide. The EPO has managed to impose upon European patenting a

relatively harmonised level of inventive step. It has done so by force of

application numbers as well as through significant training and internal

harmonising procedures. No doubt, after a period of time, levels of

inventive step in software will be harmonised and will operate within

relatively narrow bounds. We are not, though, at that stage and there

must be some worry that the lower levels of inventive step which might be

expected through utility model protection must be unclear.

After all, what is the notion of ‘not very obvious’ to mean in software

terms when it is not yet clear what is to be protected as ‘not obvious’?

For those who do not have sufficient experience of the patent system

(in particular SMEs), it may be that what will be seen as ‘not very obvious’

(and also worth protecting) are those parts of the program which the

copyright system has failed to protect: for example, the ‘look and feel’ of

programs. Certainly, a new program’s look and feel can be ‘not very

obvious’ and can have significant advantages – both to smaller firms

who wish to protect their ideas, and to larger companies wishing to

178 Software and Patents in Europe

develop a brand image and common interface. It seems likely that there

will be a host of utility model applications (untested and unexamined)

requesting protection which industry has shown it is interested in gaining,

but which has not been provided through the copyright system. Such a

volume of untested utility models must cause extra costs for SMEs – in

terms of applying for protection which is worthless, and also considering

the merit of competitors’ claims.

No doubt this documentation will be built up, but it will require

significant resources and also significant input from those involved in

software patenting (in, for example, opposition procedures) before the

documentation is sufficient and reliable. We will thus have to live with a

period when ‘dodgy’ patents will be awarded due to limited prior art

being available and being accessible. It seems a dangerous tactic to

bring utility model protection into a context where there is so much

confusion.

Evidence of infringement For all those considering using the new

European software protection regime, there must be concern about gath-

ering of evidence and ensuring that infringement is not occurring. In

many fields the techniques are well developed – in engineering the

machine can be stripped to its fundamentals and in chemistry the sub-

stance can be analysed. This is not the case with computer software, given

that the 1991 Directive on the Legal Protection of Computer Programs

provided software builders with a right to prevent decompilation except

under specific circumstances and towards specific goals. The extra right is

even more controversial when the patent system is taken into account: the

infringer who utilises protected inventions within a piece of software may

be enabled to hide that infringing use, but particularly when the invention

is not related to the outward appearance or ‘surface’ functionality of the

program. A litigant who suspects infringement may himself have to carry

out copyright infringement in order to determine whether this has

actually taken place or not. The route around this evidence-collecting

problem is to go outside Europe and to decompile in countries which do

not have this reverse engineering right. This is a solution which is partic-

ularly suitable for larger enterprises, and less suitable for SMEs.

Too much protection for competitors? The directive obviously grew

from the then-current Commission and European Parliament philosophy

which suggested that more protection is better. The pro-protection phi-

losophy may well be correct, but there is little evidence that more pro-

tection must necessarily translate into more pronounced European

innovation. The inception of the EPC has increased the European

The third way: between patent and copyright? 179

protection available for US and Japanese industries by producing a patent

granting system which enables easy grant throughout Europe. With

around 50 per cent of patents being awarded to non-European sources,

one might suggest that more and lower-level protection may simply retard

European innovations, particularly in the SME field, and also in the field

of software which is currently driven by US research and development.

It is not so clear that we should accept that a software patenting

philosophy which is robust enough, or has developed a community of

practitioners and examiners who have the ability to ensure that the

balance between rights owner and non-owner, is already here. Given

this, it may be a serious mistake to consider that our ideas of software

invention are at such an advanced state that we should consider allowing

utility model protection, and encouraging SMEs in software production

to look for protection to this kind of device.

Chemistry has been excepted from those areas receiving utility model

protection. There are substantial arguments that software should also be

excepted, at least until the working of the system is carried out in the

required review.56

Whatever the advantages57 which might have accrued to the small

developer, substantial opposition to the idea was found via questionnaire58

(though, with a very low response rate) and reported in 2002. There appear

to be no attempts to carry forward this idea and the Parliament may now

take a different approach to the inclusion of software in such a proposed

directive.

Conclusion: are these alternatives workable?

In this chapter, it has been suggested that there is a commonality to the

approaches arguing for a reduced hurdle for protection which differs from

that of the patent system – ‘anti-cloning’ to the Manifesto, ‘petty patent’

protection of algorithms for Paley, and ‘not very obvious’ to the European

Commission. The view that these proposals take is that a lesser hurdle is

appropriate for both software and for the smaller enterprise. The argu-

ment put here in contradiction to this view would be that software is really

56 Art. 28.
57 In their analysis of the Australian experience, Mortiz and Christie find the system works

but is also used by other countries. No specific mention was made of software in this
paper. See S. L. Moritz and A. F. Christie, ‘Second-Tier Patent Systems: the Australian
experience’ European Intellectual Property Review 4 (2006), 230.

58 Summary report of replies to the questionnaire on the impact of the Community utility model with
a view to updating the Green Paper on protection by the utility model in the internal market
(SEC(2001)1307).

180 Software and Patents in Europe

not primarily a cottage industry any more – instead it is a major industry,

both in its own right and as an adjunct to the traditional engineering

industries where analogue control has been replaced by digital control.

The proposals all tend to imply that protection for SMEs would not be

used by larger concerns, which appears to this author to be wishful

thinking.

This is not to say that these systems would not work: they all appear to

be perfectly reasonable forms of protection which could well be legislated

and would work as well as any other form of IP right. However, only the

EU proposal is being put forward as an extension of the current system,

whereas the other two see themselves as replacements for the patent

system. The problem with this latter view is that there is no clear method

for extracting software inventions from the patent system – inventors

would still want patent protection for their ideas and just by making

another option available does not mean that patent attorneys would

give up on seeking patent protection for their clients. The result will thus

be a combination of the failures – as Paley and the Manifesto argue – of

the current system and those of a new untested and untried system. It

may be that fears of this permutation offering a less perfect system than is

currently on offer will make legislators think twice about developing a

new and special software-oriented form of protection. We may, as Aubry

has suggested, be better with the system we have than a new system with

untried faults:

The system is as imperfect as other human systems. After 350 years, it has been
refined and balanced, but as a result it can be criticised for its costs and delays.
However, as has been said on more than one occasion, no-one has yet thought of a
better system. None of the alternatives so far seems likely to attain those particular
objectives which the patent system despite its short-comings achieves day by day
and week by week. That is why it is so widely used by the world’s industries.59

The system does appear to work – though just why and how is still not

completely clear to any of the researchers who have studied it – and thus

may, through a process of systemic sluggishness, remain the only option

for software invention. It may be that attempts to improve the patent

system by adding alternative protections simply makes the system more

unwieldy, more fractured and generally less desirable.

59 J. M. Aubry, ‘A Justification of the Patent System’, in J. Phillips, Patents in Perspective
(Oxford: ESC Publishing, 1985), p. 9.

The third way: between patent and copyright? 181

7 Conclusion: dealing with and harmonising

‘radical’ technologies

It is more difficult to reject a patent application than to grant a patent.1

Introduction

This book began as an investigation into whether it was possible to find a

mechanism to limit protection for software ‘as such’ – that is, whether

there was an alternative to the relatively woolly concept of ‘technical

effect’. The project involved immersion in patent applications, file histor-

ies, granted specifications, looking for an understanding of how it might

be possible to apply that mechanism for setting the clear line across which

the European patent system might not cross. This author’s conclusion is

that there is little real hope of drawing such a line in the sand. Primarily

this is due to the fluidity of technical ideas in computing, but also –

importantly – due to the very nature of the patent granting system,

where the art of persuasion is one of the main skills of the patent attorney.

It is almost as though, when we look at the software and the patent

system, we see a path down which we are being moved: there may be

objects in the path (the open source movement and other opponents,

hazy notions of ‘technical’), but there is a near-steam-roller effect of

almost technological and economic determinism which ensures that we

will eventually arrive at a position where this radical technology is pro-

tected. We are almost at that point, but a failure to accord sufficient

importance to the way that this new technology is constructed has not

helped, and has perhaps supported the fears of opponents. For example,

emphasis upon technical effect has undermined examination of the tech-

nology as such and has allowed what appears, to this author, to be a very

low order of invention to be protected. The ‘technical effect’ approach

1 From an interview with Prof. Erich Hausser (then President of the German Patent Office).
See P. Leith, Harmonisation of Intellectual Property in Europe: A Case Study in Patent
Procedure (London: Sweet and Maxwell, 1998), p. 143.

182

relied upon there being a community of experts who could see what was

technical and inventive: that is, relying upon a social community and its

shared understanding. However, a computer science-oriented reader of

some European patent specifications might often wonder where the

experts were when these were examined.

In this concluding chapter, there are several strands which are worth

highlighting. These do not comprise any exhaustive list – there are many

parts of the patent system relating to software which would benefit from

examination in a more theoretical light. For example, the role of bureau-

cratic systems in legal harmonisation is an important topic for theorists of

law, and even feminists could look usefully at issues: programming has

always had an issue with status vis-à-vis hardware and the early history of

programming is one where it was perceived in a derogatory way as

‘women’s work’. Indeed, a number of the most innovative developments

in computing have arisen from women inventors. But has that perceived

lack of status impinged upon our later views of whether software should

be protected when male-dominated notions of technology are viewed as

superior? On the development of substantive law, there are relevant issues

of the integration of monopoly-based approaches more directly into

intellectual property law. Procedural matters, too, can be developed

with respect to the patent system: how do we get a better and cheaper

system of patent litigation in Europe?

Software has changed how the courts view national borders and this

change may make one wonder whether we are moving towards a more

international system. For example, we noted the Menashe patent (in

Chapter 1) related to a gambling system which was linked to a commu-

nications system. Clearly, a communications system could mean that

only part of the invention might reside in a country where there is patent

protection – the part, most probably, which does not evidence any pro-

tectable element. William Hill, a bookmaker, had a system which allowed

punters to bet via computers. The server was located in Curaçao in the

Netherlands Antilles and, thus they claimed, could not infringe a

European patent which had entered the UK national phase because the

host computer was abroad. The judge was asked to decide whether a

system so dispersed infringed under UK patent law or not. In a relatively

short judgment, Jacob J took the view that what was important was the

‘effect’ of the patented system as a whole: ‘No businessman would think

for a moment that the effect of the invention is not within the UK when the

whole point of the defendants’ system is to get UK punters to play their

system.’ Looked at as a system, where the punters were based in the UK,

clearly meant that the patent was being worked in the UK and thus – if the

patent was valid – infringing:

Conclusion: dealing with and harmonising ‘radical’ technologies 183

If William Hill have a defence it must be that they are not using a system within the
claims of the patent or that the patent is invalid. The wheeze of putting the host
computer abroad is of no help to them.2

Likewise, in the BlackBerry litigation between RIM and NTP, the Court

of Federal Appeals3 also looked at the question of whether the location of

servers abroad (in Canada in this instance) meant that the patent was not

being infringed in the US. The court took the view that:

we conclude that when two domestic users communicate via their BlackBerry
devices, their use of the BlackBerry system occurs ‘within the United States,’
regardless of whether the messages exchanged between them may be transmitted
outside of the United States at some point along their wireless journey.

The court followed on with reasoning similar to Jacob J that:

Even though one of the accused components in RIM’s BlackBerry system may not
be physically located in the United States, it is beyond dispute that the location of
the beneficial use and function of the whole operable system assembly is the
United States.

This new technology of computer-based communications is clearly trans-

national and the national status of patents is becoming less important.

The patent granting system must be viewed in the context of litigation,

a topic that has not been well researched in Europe. The European

situation may not be quite as bad as in the US, where it has been held that:

litigation has become an increasingly inefficient, ineffective and undesirable
means of resolving patent related disputes . . . unless the problems of cost and
delay in patent litigation are addressed now, the central purpose of the patent
system to provide an effective incentive for development and commercialization
of new technology will be seriously eroded. Such an erosion could well prove a
threat to the very existence of the patent system.4

but issues such as jurisdiction remain potential problems in a Europe where

the ‘Italian Torpedo’ may or may not continue to exist.5 Cost of either

warranted or unwarranted litigation over infringement is certainly one of the

2 Menashe Business Mercantile Ltd and anor v. William Hill Organization Ltd [2002] EWHC
397 (Pat), para. 25. The Court of Appeal affirmed the decision: Menashe Business
Mercantile Ltd and anor v. William Hill Organization Ltd [2002] EWCA Civ 1702.

3 NTP, Inc., v. Research In Motion, Ltd, United States Court of Appeals for the Federal
Circuit, 03–1615, 14 December 2004.

4 Advisory Committee on Patent Law Reform, A Report to the Secretary of Commerce
(Washington, DC: US Government Printing Office, 1992), p. 76, quoted in
W. Kingston, Enforcing Small Firms’ Patent Rights (University of Dublin Press 2000), NB-
NA-17-032-EN-C.

5 The ‘Italian Torpedo’ was a procedural manoeuvre to slow up litigation. Some commen-
tators have suggested that the Italian Supreme Court has torpedoed this itself in the ruling
in BL Macchine v. Windmoeller & Holscher, 6 November 2003. See a useful discussion from

184 Software and Patents in Europe

fears of the European software SME groupings. There appears to be little

comparative research conducted on the different procedural approaches in

Germany, France, Italy and UK on litigation, but the rising level of hearings

at the Munich courts suggests that patent holders view the German system

as ‘better’, though it is not totally clear why. Germany has lower costs owing

to having a much more restricted procedural system, but there may be other

advantages, too.6 Arbitration has been viewed in other legal areas as desir-

able as a means to reduce the costs of handling infringement issues, but

whether it is an appropriate model when rights are awarded by the state

requires more discussion.7 And the finding of infringement by a software

patent holder can be difficult even without a reverse engineering

prohibition.8

These questions will not be dealt with here. Instead, there are several

issues which are directly related to software protection which, it is sug-

gested, require immediate attendance:

1. When we are dealing with a radical technology, we need a raised level

of inventive step.

2. Where do we go now in terms of European harmonisation?

3. Finally, a very brief argument as to why patent protection for software

may be of benefit to computer science as a developing discipline. The

patent system is by no means perfect, and thus computer scientists have

not been aggressive in demanding protection. But, to this author, it does

seem that integration within the patent system could have benefit through

the development of a more ‘scientific’ approach in computer ‘science’.

Inventive step

The notion of ‘inventive step’ is one which is found in the EPC itself in

Art. 56: ‘An invention shall be considered as involving an inventive step if,

the EU-funded project (at http://www.ulb.ac.be/droit/ipit/), Judicial Cooperation In
Matters Of Intellectual Property And Information Technology, Cross-Border Litigation in
Intellectual Property Matters in Europe Background Paper for the Heidelberg Workshop (2006).

6 See the Annual Reports, with figures of the BundesPatentGericht at http://www.bpatg.de.
Also see K. Cremers, ‘Determinants of Patent Litigation in Germany’, Discussion Paper
No. 04–72, Centre for European Economic Research (2004), available online at ftp://
ftp.zew.de/pub/zew-docs/dp/dp0472.pdf

7 Kingston believes there is evidence for its utility, but does leaves a number of issues aside
in his discussion. See W. Kingston, ‘The Case for Compulsory Arbitration – Empirical
Evidence’, European Intellectual Property Review 22(4) (2000), 154–8.

8 K. Nichols, Inventing Software: The Rise of ‘computer-related’ Patents (Westport, CT:
Quorum Books, 1998), pp 57–77 gives a useful example of this in his discussion of a
text searching method which could be used for internet searching and which would be
difficult to detect should it be utilised by a competitor.

Conclusion: dealing with and harmonising ‘radical’ technologies 185

having regard to the state of the art, it is not obvious to a person skilled in

the art . . .’ The conception of step, however, tends towards suggesting that

we have an equal riser for all inventions and that this is somehow a given

which is relatively easy for the examiner to follow. This is not the case: we

would technically be better to talk about ‘inventive height’, since this

emphasises that heights are as variable as lengths of string, whereas steps

are usually not. When the EPO was instigated it came into a European

patent world where there was quite a substantial difference between

what each national office saw as the inventive step required to gain

protection. For example, the German office was keen to promote a higher

level of inventive step for several reasons – in part because the German

office had historically had a higher requirement than other countries, but

also because it saw itself as an aggressive competitor to the EPO, thus

ensuring that the EPO’s own standards of service to the patent commun-

ity were kept up: competition was to be offered by speed of service to

applicants, good search files and well-trained examiners. Importantly,

one of the ways in which it saw itself as competition was in retaining a

higher level of inventive step than the EPO. The then President of the

German office suggested:

And we have still kept our [higher] level of inventive step. It is more difficult to get
a German national patent than a European patent and that is related to our level of
inventive step. Connected to this high level is a broad scope of protection – with a
higher level of inventive step you can give broader protection.

There was a temptation for our examiners to be more generous when deciding
levels, but we tried to keep our standards and many applicants now realise that
this gives a better scope of protection. A lot of these applicants are coming back
to our office.9

The aim was thus to have good examination, but to keep the level high

so that the granted patent was viewed as being more likely to stand up to

validity hearings. As Professor Hausser suggested, in the quotation at the

beginning of this chapter, it would have been easier on his examiners to

drop their level of inventive step, since granting patents was easier than

finding reasons for not granting. Hausser was not a particular friend of the

EPO, and his comments could be taken as a criticism of the EPO exami-

nation where, in his view, the EPO examiners might not be as good

technically (though much better paid) and were prepared to give protec-

tion where it should not have been given. The EPO, of course, had a

difficult task in their first few years. It had to determine a level which was

appropriate and one which would not frighten away national applicants.

9 From an interview with Prof. Erich Hausser (then President of the German Patent Office).
See Leith, Harmonisation, p. 145.

186 Software and Patents in Europe

It also had to take into account that the patents, when they moved into the

national phase, would be considered by national courts each with a

different attitude to inventive step. One of the earliest Board of Appeal

decisions thus related to the setting of the height of the step where, in

Thermoplastic Sockets, it was stated:

In arriving at the above conclusion the Board has taken into consideration that
patents granted under the EPC should have inventive step sufficient to ensure to
the patentees a fair degree of certainty that if contested the validity of the patents
will be upheld by national courts. This standard should therefore anyhow not be
below what may be considered an average amongst the standards presently
applied by the Contracting States.10

The Leberl Study, which was initiated by the EPO and looked into levels

of inventive step, noted:

The simple fact is that the level at which the inventive step requirement is pitched
varies from one national office to another; but within each office, standards can
vary considerably depending on the examiner handling the case.11

What might this mean for software examination? First, since inventive

step is in large part a product of the problem and solution approach which

utilises the closest prior art, we can see that it is possible to get the

inventive step grossly wrong if there is an absence of prior art.

Sometimes on reading granted patents (as with the document prepara-

tion examples noted in Chapter 4), one gets the feeling that, since little

relevant prior art has been found or noticed, the invention is actually

being given protection for its apparent novelty rather than anything more

substantive. Second, it means that we cannot be sure that the level of

inventive step being applied to computer-related inventions is similar to

that of other fields, since there is no methodology which lets us measure

and map each technical field. Third, it means that inventive step is a

flexible notion rather than one which is concrete or fixed.

Many of the concerns of the opponents to software patenting arise

because of what they perceive as obvious applications being given pro-

tection – that, for whatever reason, the inventive step is too low. While it

is always difficult to analyse an application with respect to obviousness

some years after it was published and after the field has developed

technically, this author’s own feeling is that there is more than a grain

of truth in this criticism. It appears to be that, in a new technical area,

the examiner’s critical sense (based upon available prior art) is some-

times missing. Further, when workloads rise and the most important

10 AECI/Thermoplastic Sockets, T1/81 (OJ 1981, 439).
11 M. Vivian, ‘Leberl Study’, Mitteilungen der Deutschen Patentanwälte 84.Jg. (1993) 204.

Conclusion: dealing with and harmonising ‘radical’ technologies 187

measure of the success of an examiner is his throughput, it will always be

possible for the examiner to take Professor Hausser’s dictum to heart and

grant a patent rather than reject an application, because it eases the

workload.

This does not, though, seem to be an insuperable problem. If inventive

step is a flexible notion, there is no reason why, in totally new fields such

as computer program as such, the level of step cannot be raised. There will

be objections from those attorneys whose main goal is protection at any

cost,12 but for confidence in the system as a whole, it appears that a higher

inventive step in CII matters would be more useful than a lower one.

Raising the level of inventive step will not solve all the problems in

examining software as such, but it could be a major factor in undermining

the opposition to granting patents on ideas which seem – to the computer

science community – obvious.

Where do we go now?

If my prediction at the beginning of Chapter 1 is to become true – that is,

that protection for software ‘as such’ is just around the corner, then how

might it be achieved? There appear to be three paths: first, through a

directive; second through some common court along the lines of that

proposed for the Community Patent; and third through the EPO and its

appeal structure. But which is most likely?

With reference to the first, it does not appear that the Commission,

having had its nose bloodied over the CII Directive, will wish to enter

the fight again.13 It is possible, of course, that the environment will

change and that the European Parliament will rethink its opposition to

software patents if, for example, it realises what is actually being pro-

tected at present. However, there are no signs of this. The second path

might have appeared possible until recently. The European Patent

Litigation Agreement14 appeared to be a method of moving forward

by arranging a central patent court comprising a court of first instance

and an appeal court:

12 Leith, Harmonisation, vol.3, Perspectives on Intellectual Property, Chapter 5 deals with
patent attorney perceptions of inventive step, etc.

13 C. McCreevy, as European Commissioner for Internal Market and Services, ‘The
Commission’s Work Programme for 2007’, European Parliament Committee on Legal
Affairs (2006): ‘I will not bring a new initiative forward on this during my time as
Commissioner for the Internal Market. I will leave this choice to my successor.’

14 European Patent Organisation Working Party on Litigation, Draft Agreement on the
Establishment of a European Patent Litigation System (2005), available online at http://
www.european-patent-office.org/epo/epla/pdf/ewl0510.pdf.

188 Software and Patents in Europe

Article 3 European Patent Judiciary
(1) A European Patent Judiciary is hereby set up to settle litigation concerning

the infringement and validity of European patents effective in one or more of
the Contracting States. The European Patent Judiciary shall have judicial,
administrative and financial autonomy.

(2) The organs of the European Patent Judiciary shall be:
(a) the European Patent Court, comprising the Court of First Instance, the

Court of Appeal and a Registry;
(b) the Administrative Committee.

(3) The European Patent Court shall perform the functions assigned to it by this
Agreement.

(4) Subject to Article 5, the European Patent Court shall be supervised by the
Administrative Committee.15

However, harmonisation of the judicial function continues to be prob-

lematic and although the idea of a European Patent Court has been given

explicit support by many senior patents judges throughout Europe in

what is known as the Second Venice Resolution,16 it is not clear that

the hurdles can be overcome as easily as some might hope. McCreevy, as

European Commissioner for Internal Market and Services, was hardly

enthusiastic about the likelihood of European involvement when he

stated:

The European Patent Litigation Agreement is seen as a promising route towards
more unitary jurisdiction. Therefore, I will ask my services to explore the possi-
bilities of moving this project forward. However, you should be aware that there
are some institutional hurdles to be tackled if the Community is to become
involved in the EPLA initiative. Furthermore, stakeholders differ on the degree
of centralisation or the nature of the local first instance courts.17

This lack of enthusiasm was to be well founded when the proposal was

rejected by national governments in December 2006.18

15 With the Administrative Committee appointing judges and deciding rules of procedure.
16 http://www.eplaw.org/Downloads/Second%20Venice%20Resolution%20dated%204%

20November%202006.pdf.
17 ‘Closing remarks at public hearing on future patent policy’, Public Discussion on Future

Patent Policy in Europe, Brussels, 12 July 2006.
18 T. Buck, ‘Hopes fade for EU patents reform initiative’, Financial Times, 6 December

2006: ‘. . . the plan on Monday failed to secure backing from national governments, after
several ministers called for the EU to pursue its own patent litigation regime. Mr McCreevy
said the latest setback had made him ‘‘pessimistic’’ of making any meaningful progress on
an issue seen by business leaders as crucial for the future of European companies.
‘‘Anything remotely concerning this patent area is fraught with minefields at every turn
of the road,’’ he said.’

Conclusion: dealing with and harmonising ‘radical’ technologies 189

The third option, that of involving the Boards of Appeal, is two-part.

Practice could be amended by Board 3.5.1 or could be amended by the

Enlarged Board of Appeal. The latter approach appears to be the sugges-

tion of the English courts.19 In Aerotel Jacob LJ suggested that

the Enlarged Board might consider questions which the court had

constructed:

(1) What is the correct approach to adopt in determining whether an invention
relates to subject matter that is excluded under Article 52?

(2) How should those elements of a claim that relate to excluded subject matter
be treated when assessing whether an invention is novel and inventive under
Articles 54 and 56?

(3) And specifically:
(a) Is an operative computer program loaded onto a medium such as a chip

or hard drive of a computer excluded by Art. 52(2) unless it produces a
technical effect, if so what is meant by ‘technical effect’?

(b) What are the key characteristics of the method of doing business exclusion?

This suggestion follows on from a general view in the UK that the

Enlarged Board of Appeal is a relevant source of policy clarification, as

was said by Neuberger LJ in LG Philips v. Tatung:20 ‘[t]he Enlarged Board

has developed the law on added matter in ways which can be said to

involve superimposing a degree of policy over what had been perceived by

the English courts as a relatively pure issue of principle.’ Such a view may

or may not be correct, but are these Aerotel questions ones which the

Enlarged Board would be prepared to consider? Perhaps, but it seems

unlikely that they will produce any solution different from that of the

Boards of Appeal themselves – given that the Enlarged Board is made up

of Boards of Appeal members with ‘added externals’ rather than being of

different composition entirely.21 Board 3.5.1 has had several opportuni-

ties to pass these questions on to the Enlarged Board but has not felt the

need: these, in its view, are questions of a technical nature and do not

19 ‘It is formally no business of ours to define questions to be asked of an Enlarged Board of
Appeal. What we say now is only put forward in case the President of the EPO finds it
helpful. If he thinks it pointless or arrogant of us to go this far, he is of course entirely free
to ignore all we say. Nonetheless in the hope that there is a spirit of co-operation between
national courts and the EPO we ventured to ask the parties what questions might be
posed by the President of an Enlarged Board pursuant to Art.112. As we have said the
British Comptroller of Patents has encouraged us in this course.’ Jacob LJ in Aerotel Ltd v.
Telco Holdings Ltd and others Rev 1 [2006] EWCA Civ 1371 at para. 75.

20 LG Philips LCD Co Ltd v. Tatung (UK) Ltd and others [2006] EWCA Civ 1774.
21 Details of current membership are contained in ‘Notice concerning the composition of

the Presidium of the Boards of Appeal for 2006’, 19 December 2005, EPO.

190 Software and Patents in Europe

require the legal input from the Enlarged Board. As Board 3.5.1 stated in

their decision of 30 July 2003:22

According to Article 112(1)(a) EPC, ‘important points of law’ . . . shall be referred
by the Boards of Appeal to the Enlarged Board in order to ensure uniform
application of the law. Questions which normally arise during proceedings before
the Board and merely relate to the interpretation of the technical content of
the patent application, the patent specification or the prior art documents, or
are concerned with the assessment of novelty or inventive step, cannot normally
be considered to warrant the referral of a question of law to the Enlarged Board
of Appeal.

Which approach can be read as suggesting that the notion of ‘technical

effect’ will be read as being concerned with the ‘assessment of novelty or

inventive step’ and thus not appropriate for the Enlarged Board. The

questions set by Jacob LJ thus potentially fall within what the Board of

Appeal views as its own competence, rather than that of the Enlarged

Board. Jacob, however, is suggesting that the Board itself is not required

to make the referral, but that this should be done through the President of

the EPO, which would be a possible route – under Art. 112 – but only if

there is a difference of opinion between two Boards of Appeal.23 This

does not appear to be the case here: all the boards are happy with the

concept of ‘technical effect’ and recent EPO overviews of the law relating

to inventive step and technical contribution do not raise any particular

problems of diverging interpretation.24 Whether the Enlarged Board

would in any event be happy to take on these questions is moot: their

involvement to date in decisions has primarily been in the resolution of

procedural questions rather than in the matter of substantive patent

law.25 As this author noted of G1/97 (‘Request with a view to revision’)

in a study of the Boards of Appeal:

The Enlarged Board of Appeal had thus the opportunity to deal with questions as
to how it saw its role and its relationship with the Boards of Appeal, and also how
the EPC related to the wider legal context of TRIPS. In its decision . . . the EBoA
declined to see itself as a ‘court of appeal’, argued that it could not initiate such an
extra appeal process and also suggested that TRIPS and the EPC were not
incompatible with regard to review of decisions. This, too, was how the

22 T 0367/01, ‘Television set with improved remote control unit’.
23 EPC Art. 112: ‘(b) the President of the European Patent Office may refer a point of law to

the Enlarged Board of Appeal where two Boards of Appeal have given different decisions
on that question.’

24 See EPO, Board of Appeal And Enlarged Board Of Appeal Case Law, Special edition OJ EPO
(2006).

25 Their major input to substantive patent law has been G5/83 (Second medical indication),
G 0002/88 (Friction reducing additive) and G1/98 (Transgenic plant/NOVARTIS II).

Conclusion: dealing with and harmonising ‘radical’ technologies 191

President of the EPO had seen the situation in his comments to the Enlarged
Board – that the Board of Appeal decisions were final, that it was never the
intention of the creators of the EPO to create ‘its own procedural law’ or ‘creation
of an entirely new judicial remedy’. The EBoA noted that not all countries who
were signatories of the EPC had developed judicial review by statute, though it
claimed that in ‘the vast majority of cases’ this was so.26

If the Enlarged Board had viewed their role as one of review of the

Boards of Appeal (as, in fact, a ‘court of appeal’) which would allow a

type of judicial review of decisions from the other boards, then it is

difficult to see how this development could have been halted. It may

even have been welcomed. The independence and standing of the

Boards of Appeal would not necessarily have been undermined, and the

general feeling amongst users of the EPO that procedural matters which

impinged upon ‘fair process’ would be seriously dealt with would surely

enhance the standing of the appeal process in the EPO. That appears to

be the role which Jacob is seeking: unfortunately, it does not appear to be

a role which the Enlarged Board itself desires, and this is most probably

due to the structure and makeup of the Enlarged Board: it is simply not an

independent review mechanism, but rather is a means for the various

board members to agree a common approach amongst themselves.

This leaves any development within the sphere of the Board of Appeal

itself, and most probably within the sphere of Board 3.5.1. Is there likely

to be a change of tack away from the woolly concept of ‘technical effect’?

Perhaps – since Board 3.5.1 has been happy to discuss the possibility of

TRIPS and its relationship to the EPC. For example, in T0276/99, the

Board seemed to suggest that if there was a serious conflict between

TRIPS, EU treaties and the EPC that it would be prepared to discuss

this conflict:

15. The Boards of Appeal are bound by the provisions of the EPC (Article 23(3)
EPC). What the appellant is seeking in his main and first auxiliary requests is
against these provisions, and the Board cannot regard the appellant as having
made out any serious case by reference to the TRIPS Agreement or the EU
treaties that might justify allowing something forbidden by the EPC.27

T276/99 further suggested that: ‘. . . as the EPO Boards of Appeal are not

a court or tribunal of an EU Member State, they do not have the status to

refer a question to the Court of Justice of the European Union.’ Is this an

indication that they would feel confident about handling any relevant

26 P. Leith, ‘Judicial and Administrative Roles: The Patent Appellate System in a European
Context’, Intellectual Property Quarterly 1 (2001), 50–99.

27 T 0276/99, 26 September 2001, ‘Display device including a correction circuit, and
correction circuit for use in said device’.

192 Software and Patents in Europe

questions themselves rather than passing them on to another judicial

body? Such a move would be politically controversial and would require

a Chairman who was happy to put his head above the parapet, but, given

the lack of logical coherence in the present situation, the present Chair

may be prepared to undertake this integration of TRIPS within the EPC

framework.

The important element of TRIPS, so far as patentability of software is

concerned, is Art. 27, which refers to protection being available in ‘all

fields of technology’:

TRIPS Article 27: Patentable Subject Matter
1. Subject to the provisions of paragraphs 2 and 3, patents shall be available for

any inventions, whether products or processes, in all fields of technology, pro-
vided that they are new, involve an inventive step and are capable of industrial
application . . .

Arising from TRIPS is a developing view – and one which is being raised

by parties in argument at the Boards of Appeal – that Art. 27 requires that

software be protected as such since it is a ‘field of technology’. TRIPS is

potentially a highly important development in the protection of software,

offering, as Cornish and Llewelyn suggest, ‘a potency of novel order in the

international relations of IPRs’.28 If this author was a gambling man – a

user of the system outlined in the Menashe patent, perhaps – he might

suggest that a small bet might be laid on Board of Appeal 3.5.1 finally

shutting off the software exclusion through integrating TRIPS into the

interpretation of the EPC.

Conclusion: are patents of benefit to a radical technology?

The thrust of this book has been that software should be protected in its

own right through the patent system. However, what has been proposed

is a relatively limited view (i.e. ‘traditional’ programs) and it may be that

we need to consider a broader view of where we go with the protection of

innovation in the world of ICT. We are – after all – dealing with a radical

technology which has now had some measure of protection from the

patent system for almost a century and a half: Morse’s US 1,647 of

June 1840 included a claim to ‘signs’ which could be transmitted over

distances.29 The radical nature of this technology has been recognised by

28 W. R. Cornish and D. Llewelyn, Intellectual Property: Patents, Copyrights, Trademarks and
Allied Rights, 5th edn (London: Sweet & Maxwell, 2003).

29 ‘3. The use, system, formation, and arrangement of type, and of signs, for transmitting
intelligence between distant points by the application of electro-magnetism and metallic
conductors combined with mechanism described in the foregoing specification.’

Conclusion: dealing with and harmonising ‘radical’ technologies 193

many cultural commentators such as Marshall McLuhan and Walter

Ong, who posit that the most radical of technologies are always those

which affect communication and distance (whether in space or time), and

that the new ‘electronic culture’ could be expected to change society just

as radically as had the previous communication revolutions of manuscript

and print. There surely can be no-one who fails to see that this new means

of communication is highly revolutionary: yet the patent system appears

to deny this, by suggesting that we have to force the technology into an

older device model. The situation of protecting this new technology

through a device is akin to protecting chemistry through dressing up the

inventions with test tubes and flasks and locating the invention in the

laboratory hardware. Such an approach is hardly suitable for such a far-

reaching technology.

The approach from computer science has not helped. Like most tech-

nologists, they have preferred to stay clear of lawyers, viewing them as

more problem than solution. Thus the underlying assumption of the

discipline has been similar to that of Garfinkel et al. and their belief that

‘patents are bad for software’.30 That is certainly one view, but it is not the

only view. It could equally be the case that what the field of computing

needs at present is a patent system to force upon it some measure of

discipline. For example, we have already noted that there is a haphazard

use of terminology in the field; there are also – to this author’s eyes –

frequent instances where the wheel is being reinvented over and over

again; and peer review of claimed advances is almost-totally missing. A

patent system which examined software on software’s own terms may

well be the mechanism which forces an improvement in the culture of

computer science. The court and legal system will make claims to pro-

ducing the ‘truth’ – certainly a conceit – but the courtroom does have the

ability to force the participants to consider their assumptions.

Technologies such as physics and chemistry have developed within a

patent framework and it has done them – in the long term – no harm at

all. They have means of clear communication, a developed sense of what

constitutes a technical advance, and a robust attitude to testing claims of

novelty. The patent system has not been entirely responsible for these

developments, but it does not appear to have prevented a positive envi-

ronment developing.

Computer science is not a field which has developed the kind of institu-

tional and agreed frameworks for communication and peer review: far

from it – it is a ‘science’ which is far from ‘scientific’. Donald Knuth’s The

30 S. L. Garfinkel, R. M. Stallman and M. Kapor, ‘Why Patents are Bad for Software’, Issues
in Science and Technology (Fall, 1991), 50–5.

194 Software and Patents in Europe

Art of Computer Programming was an attempt to bring a methodological

approach to computing, but it was one which was based in mathe-

matical approaches. It is clear, almost 40 years later, that the mathemat-

ical approach has not brought rigour, or less bug-ridden programs, or

helped to avert the ‘software crisis’ and the ability of the discipline to

produce programs in complex environments on time, to cost, and to

function as promised. This author’s own view is that computing is closer

to a more ‘engineered approach’, but not the kind of ‘software engineer-

ing’ which tries to use mathematical techniques. Rather, it is a complex

combination of pure technology and social issue – and that social aspect is

frequently to do with usability in its widest sense. If techniques can be

found which will save many millions of euros from being wasted on

catastrophic computer implementations,31 then why should the inventors

of these not be rewarded? If techniques can be found to take a computing

artefact which is successful in the lab but not in practice out into the

world, again why should the inventor not be rewarded?

The debate over protection for software ‘as such’ is sterile. Software is

being protected in Europe. What is more important now is to ensure that

it is being appropriately protected – particularly that over-protection is

not available, and that examination is being carried out effectively. But it

is also important that we detach ourselves from the current debate and

attempt to locate just what it is in software and its application that we

want to encourage – that is, how broad should our view of ‘technology’ be

when we come to discuss the aims and goals of the patent system? Peter

Prescott suggested in CFPH LLC, that ‘[w]e sense that we know ‘‘tech-

nology’’ when we see it’,32 which is certainly true, but highlights that we

are all going around with different ideas in our heads about the meaning

of the term. It appears to this author that now is the time to discuss more

fully our disparate notions of technology and make explicit just what it is

about software which we wish to protect and concentrate upon ensuring

that the patent system does this openly and free from artifice.

31 And few are the UK government projects which do not waste significant sums of money.
32 Patent Applications by CFPH LLC [2005] EWHC 1589 (Pat).

Conclusion: dealing with and harmonising ‘radical’ technologies 195

Index

abstract models 46, 53, 58
abstraction 33, 52, 55

levels of 66–7, 68
Adams, J. 88
‘add-on’ interacting programs 164, 168–9
Aerotel 4, 137, 150–2, 190
Aharonian, Gregory 168
Aiken, Howard 74
Alapatt 170
algorithms 8, 34, 135, 141–7, 170

copyright protection 73
data representation and 50
experimental exemption and 145
LXW patent 94
nuclear handling experiment 44–5, 46–7,

49–50
Paley’s petty patent model and 171, 172
phonetic algorithm 145–6
protection for 6, 7, 137
Soundex algorithm 145–6
Vicom 27–30, 141–2
see also mathematical methods

Alvey programme 80
AM 58, 126
Amazon ‘1-click’ patent 148–9
Apple 112

HyperCard 106, 107–9
artificial intelligence 22, 55, 58, 67–8,

80, 126
Asija, Pal 18
Atari 106, 109
Atkinson, Bill 108
Aubry, J. M. 181
auction systems 12
Australia

business method patents 149
Macrossan patent 149

Backus, John 35, 48n
Badger Co. Inc’s Application 17, 19
Bainbridge, David 74n, 75
Bakels, R. 88

Bangemann Report 71, 79–82, 91, 92
Banks, M. A. L. 20–1, 25, 29, 138–9
BASIC 48n
BCD-Conversion 21, 28
behaviour

software as 162–5, 166, 167, 170
Bell Labs 11
Beresford, Keith 6, 17, 24, 31, 147
Bessen, J. 88
Blackberry litigation 133, 184
‘blocks world’ problem 44n

see also nuclear handling experiment
Boards of Appeal 9, 26–34, 38, 63, 69, 72

algorithms 141
Enlarged Board of Appeal 24, 27,

190–2
examination procedures 31–4
hearings 30
independence 4, 27
inventive step 187
makeup 30
number of claims considered 61
obviousness 63
‘person skilled in the art’ 63
‘technical effect’ and 27–30, 191
therapy exemption and 24
see also European Patent Office

bubble sort sorting 146
Burk, D. L. 78
Bush, Vannevar 108–9
business method patents 8, 11, 34, 123–4,

135, 136, 147–52, 161
Aerotel patent 151
Amazon ‘1-click’ patent 148–9
Australia 149
franking devices 87
Macrossan application 151
numbers of applications 147–8
Nymeyer patent 12–16, 19–20, 58
obviousness 63
opposition 87
prior art citation 90

196

protection for 6, 7, 10
Signature patent 12–13

CAD software 20
Caller ID 2
CASE statement 57
CFPH LLC 139, 195
Chartered Institute of Patent Agents

(CIPA) 174
chemical descriptions 51
chemical process analogy 17
China 79n
Chisum, D. 143
circular store 52
classification systems 128–30

European 128
IPC 128, 129

G06Q 114, 128, 129–30, 147
US ‘Class 705’ 129

cloning 162–5, 168–9
add-ons and 164, 168–9
anti-cloning protection 161n, 164, 165,

168, 169, 180
see also reverse engineering

Cobol 14, 35n, 47, 48, 57
Cohen, S. A. 160
Comeau, Les 36
commit procedures 31–2, 36, 60–1
Community Patent 40, 72, 175, 188
Community Patent Project 90
compilers 35, 48n

single pass compiler 50
complexity 67
Compton’s multimedia patent 132
CompuService GIF file format 94
computer-aided design (CAD) 20
computer-aided manufacture (CAM) 20
Computer-implemented Inventions (CII)

Directive 10, 83, 88, 132, 155, 188
Computer-Related Inventions Directive

69–72
Comvik 63–4
copyright protection 73–8

algorithms 73
creativity and 157
merger doctrine 74–5
over-protection 157
program commands 75–6
programming languages 73–6, 159
suitability for software 157–60
TRIPS 32, 73, 157, 170, 191, 192–3

Cornish, W. R. 193
costs

development costs 81, 99, 157–8
licensing costs 95

litigation costs 86
R&D expenditure 84, 100
of software 39n
translation costs 176

Council of Ministers 69n, 70
counterfeit goods 158n
Court of Appeals for the Federal Circuit

(CAFC) 66–7, 83–4, 91, 184
Creasy, Bob 36
creativity

copyright and 157
programming and 62, 63, 64, 74
protection of 81
stalling of 146

Crouch, D. 155n
Cryptographic Authentication Process 142

data see information
data handling systems

Nymeyer patent 12–16, 19–20, 58
data processing systems 19
data structure 44, 46, 51, 55, 66
Database Directive 71, 78
databases 18, 32, 61, 74, 78
day traders 20
decision table structure 56
Denmark 89
digital images 27
Dijkstra, E. W. 21, 43
document creation method and system

Macrossan 121–5, 150–2
Woodcock 115–21

Duxbury, N. 100–1

EasyJet 75–7
EDSAC 21–2
electrical and electronic specifications 51
enabling information 66–7
engineering drawing 50–1

see also visual representation
Enlarged Board of Appeal 190–2
Epilady litigation 91
European Commission (EC) 69, 71–2, 81,

88, 173
EPO and 72
Microsoft and 96
see also European Utility Model

European Court of Justice (ECJ) 78, 84
European Parliament 70, 88, 188
European Patent Convention (EPC)

Article 52 exemptions 4, 22–6, 33, 34,
70, 136–7, 141, 146, 152–3

information 23, 153
Article 56 61n, 63
Article 83 61, 122

Index 197

European Patent Convention (EPC) (cont.)
inventive step 186–8
patent law prior to 11
patentable inventions 22–3
Working Group on Litigation 41

European Patent Court 41, 84
European Patent Judiciary 189
European Patent Litigation Agreement

(EPLA) 188–9
European Patent Office (EPO) 6, 68

Administrative Council 69n, 72n
aim 132–3
Article 52 and 24
conflicts within 72
European Commission and 72
Guidelines for examination 55, 59
Lisbon Strategy 83
number of applications and grants 71, 102
patent opposition 87, 103
status 69
see also Board of Appeal

European Trademark Office 72n
European Utility Model 173–8

chemical substances or processes
174, 180

duration of protection 175
evidence of infringement 179
examination 174, 175
exclusions 174, 175
industrial inventions 174
inventive step 175, 178–9
nationally based system 174, 175
prior art 175
problems 178–80
protection for competitors 179–80
SMEs and 174, 176, 177, 178, 179

examination see patent examination
experimental exemption 145
expert systems 74
expert witnesses 40–1

Farey, John 35n
feminist issues 155n, 183
first-in-first-out (FIFO) list 52
‘first to file’ 100
Fleck, L. 53
flowcharts 55
Ford, Henry 85, 125, 163n
Forth 75
Fortran 14, 35
forum shopping 40
Fosbury flop 136
Foundation for a Free Information

Infrastructure (FFII) 72n
France 21, 22

franking devices 87
‘free piggybacking’ 162–3

G06Q 114, 128, 129–30, 147
gambling

Menashe 7–8, 34, 64, 124
games programs 21–2
Garfinkel, S. L. 86, 194
Germany 186

BCD-Conversion 21, 28
Gebrauchsmuster protection 176, 177
litigation 185
litigation costs 86
specialist judges 40

GIF compression 94
Gifford, D. J. 96
golf club hold 136
Grant 149

Haberman, M. 86
Halasz, Frank 109
Halliburton 41–2, 62–3
Hand, Judge Learned 158
Hanneman, H. W. 26
Hansen, Per Brinch 37
harmonisation of European patent

system 69, 73, 84
Hausser, Erich 186, 188
Health Protection Agency 146
Heckel, Paul 106–7, 109, 111–14, 115

see also Zoomracks
Hill, R. 86
Hitachi case 149–50
Hjelm, Bertil 9n
HML 139n
Hoare, C. A. R. 57
Hoppen, N. 99
Hopper, Grace 35, 36, 160
Hugenholtz, P. B. 88
Hunt, R. 88
HyperCard 106, 107–9

Zoomracks dispute 111–14
hypertext 107, 108, 109

I2010 initiative 82
Ibcos 75
IBM 25, 26, 39, 67, 96, 138

commit procedures 31–2, 36, 60–1
Nymeyer patent and 14–15
Virtual Machine 36
Zoomracks and 106, 107

ideas 50–4, 60–1, 62, 63, 66, 67, 158–9
expression of 158
see also textual descriptions; visual

representations

198 Index

ideograms 13, 53, 55, 58
see also visual representation

information 152–4
as abstract form 153
Article 52 and 23, 153
data structures 153

insurance schemes 93
intellectual property rights (IPRs) 81–2, 86,

92, 155
InterLisp 121
International AntiCounterfeiting

Coalition 158n
International Patent Classification (IPC)

128, 129
G06Q 114, 128, 129–30, 147

invalid patents 104, 131, 132, 133
invention 55, 65–7, 137

‘manner of new manufacture’ 10, 11, 14,
15, 19

meaning 11n
inventive step 10, 164, 167, 185–8

document creation method and system,
Woodcock 117–21

European Patent Convention 61n, 186–8
European Utility Model 175, 178–9
patent examination 103, 104, 105, 187
‘step’ 186

Jacob J/LJ 3, 4, 22, 42n, 71, 75, 150, 183,
184, 191, 192

Japan 32, 176, 180
Fifth Generation Computer Systems 79–80
R&D expenditure 84

Jasanoff, S. 40
JPG format 95
judges

expert judges 41
specialist judges 40

juries 40

Kaiser, U. 89, 92
Kapoor, M. 86, 194
Kaufer, E. 81
Kingston, William 93–4
Klemens, B. 145
Kline, Morris 144
‘know-how’ 121, 163, 164
Knuth, Donald 51–2, 142–3, 194–5
Kolle, Gert 23, 26

Lai, S. 74–5
Lakatos, Imre 9n
Landes, W. M. 83–4
Latent Semantic Indexing 127
Lauritsen, M. 118, 119

League for Programming Freedom 111
Leberl Study 187
legal databases 18
legal document drafting

Macrossan 121–5, 150–2
Woodcock 115–21

Legal Protection of Computer Programs
Directive 179

Lehmann, M. M. 54
Lemley, M. A. 96
Lenzing 4
LG Philips v. Tatung 190
Libertarian Press 16
licensing 165

compulsory/blanket 171, 172
costs 95

Limebeer, David 42n
Linux 48n, 95, 97
Lisbon Declaration 83
Lisp 48, 75
‘little man’ test 139
Llewelyn, D. 193
Lloyd, I. J. 154
Lloyd-Jacob J 17
lottery principle 100–1
Lyons Teashops 21
LZW patent 94–5

McCreevy, Charlie 189
machine

defining 8, 36
physical state machine 145
software as 15–38, 70, 104, 139, 141, 142
virtual machines 36

machine language 52
McLuhan, Marshall 194
Macrossan 4, 121–5, 137, 149, 150–2
Manifesto concerning the legal protection of

computer programs 160–5, 170, 172,
180, 181

cloning 162–5, 168–9, 180
criticism of 165–9
European Utility Model compared 175
registration system 165, 169, 171
software as behaviour 162–5, 166, 167, 170

‘manner of new manufacture’ requirement
10, 11, 14, 15, 19

Mars v. Teknowledge 78
Maskin, E. 88
mathematical methods 25, 27–8, 136–7,

141–7
numerical analysis 144
protection for 23
technical processes distinguished 28–9
see also algorithms

Index 199

media ownership 81n
Memex machine 108–9
Menashe 7–8, 34, 64, 124
merger 74–5
Merges, R. P. 87, 90
metaphor 53, 57, 58, 112

HyperCard 108–9
‘little man’ 139
‘rack and card’ patent 109–10, 113
Zoomracks 106, 109–10, 112–13

Microsense 75
Microsoft 95

MS Windows 96
piracy 74n
Word 119

mnemonics 75
mobile phone technology 63–4
monopoly issues 94–6, 99, 104
Moor, James 67–8, 126, 157
Morse, Samuel 193–4
MP3 players 158n
Mueller, F. 70

Naur, Peter 48n
Navitaire v. EasyJet 75–7
Neitzke, F. W. 10n
network effects 85, 96
Neuberger LJ 190
New York Law School

Community Patent Project 90
Newell, A. 143
Newman, Judge 154
Newton, Isaac 143
non-procedural programming 57
NoteCards 107, 109
novelty 7, 11, 123
NTP 184
NTT 64–5
nuclear handling experiment 43–9, 62,

65, 73
numerical analysis 144
nursing technology 146
Nymeyer patent 12–16, 19–20, 58

IBM’s objection 14–15

object-oriented programming (OOP)
46, 74

obviousness 60, 104, 105, 123, 130, 187
‘person skilled in the art’ and 61, 62, 63

Olson, Steven 19
Ong, Walter 194
open source movement 35, 60, 70, 92,

100, 169, 172–3, 182
opposition see patent opposition
Oracle application 139

Paley, Mark 169–73, 175, 180, 181
see also petty patent model

Paré, D. 88
Patent Act 1949 11
patent attornies 9, 18, 60, 91, 135, 151, 153

patent examination and 103, 114–15,
117, 124, 127

tactics and methods 65
Patent Co-operation Treaty (PCT) 23,

25, 97
Patent Defence Union (PDU) 93–4
patent examination 48, 85, 90–1, 102–34

application success rate 102–3
centralisation 132
classification systems 128–30
EPO guidelines 55, 59
European Utility Model 174, 175
inventive step 103, 104, 105, 187
no examination 171, 172, 174
‘objective technical problem’ approach

130, 131
‘obviousness’ criterion 60, 61, 62, 63,

104, 105, 130
patent attornies and 103, 114–15, 117,

124, 127
petty patent model and 171, 172
prior art see prior art
privatisation 132
problem-and-solution approach 130–1
programming expertise and 65, 67
public input 131–2
re-examinations 131–2, 141
social benefit and 98–9
Wikipedia.org 52–3
workability of ideas 125–8

Patent Law Treaty (PLT) 133
patent opposition 103–4

business method patents 87
patent protection

argument for 79–84
harmonisation of European system 69,

73, 84
hindering effect 85, 86–90
‘little man’ test 139
lottery principle 100–1
monopoly issues 94–6, 99, 104
network effects and 85, 96
policy argument against 85–96
protectable software 138–41
SMEs and 85, 86, 88–9, 91–4
social benefit 98–9
‘workarounds’ 97–8

Patents Act 1977 20, 173
Patents Court 41, 86
periods of protection 165

200 Index

Perlis, Alan J. 42–3, 47, 48
‘person skilled in the art’ 41, 55, 61–5

mobile phone technology 63–4
obviousness and 61, 62, 63
programmers 64–5

petty patent model 167, 169–73, 175,
180, 181

algorithm protection 171
compulsory/blanket licensing 171, 172
criticism of 172–3
European Utility Model compared 175
exhaustion of rights on first sale 171
infringement findings 171
no examination 171
no infringement for non-commercial

software 171, 172–3
reverse engineering right 171
simple application filing 171
‘use’ 171
‘vapourware’ 171, 172

pharmaceuticals 156–7
phonetic algorithm 145–6
photographic representation 58–9

see also visual representation
physical state machine 145
‘piggybacking’ 163
Pila, J. 22–3
piracy 74n, 158n
Pitney Bows 87
plots and storylines 136
Plunkett, Roy 51
pop-up lists 51, 52
Posner, R. A. 83–4
Prescott, Peter 6n, 195
Priceline.com 152
prior art

awareness of 103
document creation method and system

Macrossan 121–5, 150–2
Woodcock 115–21

European Utility Model 175
‘know-how’ 121
material available for inspection 120–1
Menashe patent 7
publication in Research Disclosure 177
searching 52–3, 87, 90–1, 103, 114–21
where unavailable 130–1
see also patent examination

programmers 34–8, 67–8
‘person skilled in the art’ 64–5
use of term 5

programming 42–9
CASE statement 57
creativity and 62, 63, 64, 74
mnemonics 75

non-procedural 57
nuclear handling experiment 43–9, 62,

65, 73
object-oriented programming (OOP)

46, 74
systems 74, 75

programming languages 14, 30, 35, 52,
62, 67

BASIC 48n
Cobol 14, 35n, 47, 48, 57
copyright protection 73–6, 159
Fortran 14, 35
functionality 74
problems in defining 59–60
Prolog 55, 57
textual descriptions 59–60
see also machine language

Prolog 55, 57
protectable software 138–41
Public Patent Foundation 131
public use 127–8
PUBPAT 131n
Pumfrey J 24–5, 62–3, 75–7
push-down lists 51, 52

queues 51, 52, 53

R&D expenditure 84, 100
‘rack and card’ patent 109–11

metaphor 109–10, 113
radical technology 193–5
re-examinations 131–2, 141
Rees, Mina 144
registration systems 165, 169, 171
Reichman, J. H. 164
Reid, Lord 58–9
Rennie, John 37
Research Disclosure 177
Reulaux, F. 36
reverse engineering 77, 159, 163, 171, 179

see also cloning
RIM 184
Rimmer, M. 145
Ronde, T. 89, 92

Scherer, F. M. 99–100
Schrader 154
Schumacher, E. F. 92
Schumpeter, J. A. 69n, 99
Selden patents 125, 127
sequential model of development 88
sharedealing

Nymeyer patent 12–16, 19–20, 58
Signature patent 12–13

Shklar, J. N. 39

Index 201

Signature patent 12–13
Silberson, Z. A. 156n, 157
SIM cards 63
Simon, H. A. 143
skilled person see ‘person skilled in the art’
Slee and Harris’s Applications 17–18, 25
small- and medium-sized enterprises

(SMEs) 71, 155
Bangemann Report and 91, 92
insurance 93
Patent Defence Union 93–4
patent examination and 129
patent protection and 70, 85, 86, 88–9, 174

European Utility Model 174, 176,
177, 179

suitability for 91–4
social benefit arguments 98–9
‘software crisis’ 43
software life cycle 53–4
Software Petite Patent Act see petty patent

model
Soundakoff, A. 118
Soundex algorithm 145–6
specialist judges 40
specifications 59–61

addressees 62
sufficient disclosure 62

sports technology 136
Sprowl, Jim 25n, 117–18
SQL 32
stacks 51–2, 53, 55

HyperCard 107–8
Stallman, Richard 60, 61, 86, 92, 94n,

111–12, 194
standards 94–6
Standing Committee on the Law of

Patents 133
State Street 19, 136
Statute of Monopolies 10
Stobbs, G. A. 152
storyline patents 136
submarine patents 94–5
subroutines 21
Swift Answer 18–19
swinging on a swing 19

Tang, P. 88
Tapper, C. 24
Taylor, C. T. 156n, 157
‘technical character’ 24, 27n, 32, 33
technical contribution approach 2, 5, 9n,

34, 64–5, 70, 151–2, 155, 191
Aerotel 151–2
Macrossan 123–4
non-technical contribution and 140

technical effect 4n, 35–6, 147,
182–3

Boards of Appeal and 27–30, 191
defining 8, 9
Vicom 27–30

technological determinism 156
technology

defining 6–11
Teflon patent 51
telephone systems 150

see also Aerotel
textual descriptions 59–61

complexity 60–1
Vienna Development Method (VDM)

59–60
therapy

Article 52 and 23, 24
Thermoplastic Sockets 187
Torvalds, Linus 48n, 95, 97
trade secrets 73n, 142, 163, 164
trademark protection 84, 158n
TRIPS (Agreement on Trade-Related

Aspects of Intellectual Property
Rights) 32, 73, 157, 170,
191, 192–3

Tropp, Henry S. 144
Turing, Alan 21

Unisys 94–5
United States 32

classification system (‘Class 705’) 129
Community Patent Project 90
Constitution 23–4
Court of Appeals for the Federal Circuit

(CAFC) 66–7, 83–4, 91, 184
‘first-to-file’ rule 100n
jury of peers 40
litigation 89
merger doctrine 74–5
Patent and Trademark Office (USPTO)

18, 26, 52–3, 60, 90
number of patent applications and

grants 102n
R&D expenditure 84
re-examination system 132
‘usefulness’ requirement 19, 136

Unix 11
‘usefulness’ requirement 19, 136
utility model protection 173

Germany 176, 177
problems 178–80
see also European Utility Model

Van den Berg, P. 29, 30, 31
Van der Lely (C) NV v. Bamfords Ltd 58–9

202 Index

‘vapourware’ 171, 172
Vicom 34, 38, 138, 140, 153, 154

algorithms 27–30, 141–2
Vienna Development Method (VDM)

59–60
virtual machines 36
virtual models 48, 52, 55, 58, 67, 152
virtual worlds 42–3, 47, 48, 51, 59
visual representation 13, 53–5

engineering drawing 50–1
ideograms 13, 53, 55, 58
photographic representation 58–9

von Mises, Ludwig 16

W3C patent working group 96
Wagner, S. 87
Wang 153
Watts, James 35
Whitford J 13
Wikipedia.org 52–3
Wilkes, Maurice 21, 22
William Hill bookmakers 183–4

WIPO (World Intellectual Property
Organization) 72, 128, 133

Standing Committee on the Law of
Patents 133

Wittgenstein, Ludwig 166
women and computing 155n, 183
Woodcock, Ian

document creation method and
system 115–21

‘workarounds’ 97–8, 112

Xerox 168
Xerox PARC 106, 107, 109, 113
XML 139n
XyQuest 86
XyWrite 86

Year 2000 problem 2

Zoomracks 106–7
HyperCard dispute 111–14
metaphor 106, 109–10, 112–13

Index 203

Cambridge Intellectual Property and Information Law

Titles in the series (formerly known as Cambridge Studies in

Intellectual Property Rights)

Brad Sherman and Lionel Bently, The Making of Modern Intellectual
Property Law
978 0 521 56363 5

Irini A. Stamatoudi, Copyright and Multimedia Products: A Comparative
Analysis
978 0 521 80819 4

Pascal Kamina, Film Copyright in the European Union
978 0 521 77053 8

Huw Beverly-Smith, The Commercial Appropriation of Personality
978 0 521 80014 3

Mark J. Davison, The Legal Protection of Databases
978 0 521 80257 4

Robert Burrell and Allison Coleman, Copyright Exceptions: The Digital
Impact
978 0 521 84726 1

Huw Beverly-Smith, Ansgar Ohly and Agnès Lucas-Schloetter, Privacy,
Property and Personality: Civil Law Perspectives on Commercial Appropriation
978 0 521 82080 6

Philip Leith, Software and Patents in Europe
978 0 521 86839 6

	Cover
	Half-title
	Series-title
	Title
	Copyright
	Dedication
	Contents
	List of figures
	Introduction
	1 Software as machine
	The problem: invention and the definition of technology
	How did we get here?
	The EPC exemptions
	Patentable inventions

	The Boards of Appeal
	The missing element: the programmer’s view

	2 Software as software
	Introduction
	What underlies programming?
	The problem
	Possible solutions

	Where is the algorithm?
	Communicating the virtual worlds – the ideogram
	Textual descriptions
	The skilled man
	Where lies the invention? Levels of abstraction
	Conclusion

	3 Policy arguments
	Introduction
	Other protections
	The argument for patent protection
	The policy argument against patent protection
	Hinder or invigorate?
	Software and examination
	Suitability for SMEs
	Monopoly issues

	Do ‘workarounds’ weaken software patent strength?
	Conclusion: the patent system as lottery?

	4 Software patent examination
	Introduction
	Breadth: HyperCard versus Zoomracks
	HyperCard
	The ‘rack and card’ patent
	The dispute

	Prior art and persuasion: legal document drafting
	Method and system for creating documents
	Was it novel and inventive?
	What – if anything – went wrong?

	Macrossan and more document assembly: levels of technical contribution
	Evidential matters: do the patented ideas actually work?
	Classification system developments
	Problems and solutions
	Public input to examination
	Conclusion: does a European examination matter?

	5 Holding the line: algorithms, business methods and other computing ogres
	Introduction
	What is currently protectable as ‘software’?
	Algorithms and mathematics: are the models broken?
	Business methods
	Information
	Conclusion

	6 The third way: between patent and copyright?
	Introduction
	The ‘Manifesto’
	Does the Manifesto offer improvement to the system?
	Is software really different?
	What is so special about being cumulative and incremental?
	Isn’t everything protected by patent a behavioural form?
	Is cloning really problematic? Add-ons?
	Clarity of predictability of anti-cloning?
	Registration – isn’t this just the patent system again?

	A Software Petite Patent Act
	Criticisms of Paley’s model
	The proposed European Utility Model
	Are software utility models problematical?
	Conclusion: are these alternatives workable?

	7 Conclusion: dealing with and harmonising ‘radical’ technologies
	Introduction
	Inventive step
	Where do we go now?
	Conclusion: are patents of benefit to a radical technology?

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

